‣ SimplicialCategoryTruncatedInDegree ( n ) | ( function ) |
Returns: a CAP category
The full subcategory of the simplicial category \(\Delta\) on the objects \([0], \ldots, [n]\).
The full subcategory of the simplicial category \(\Delta\) on the objects \([0], [1], [2]\)
gap> LoadPackage( "Algebroids" ); true gap> Delta2 := SimplicialCategoryTruncatedInDegree( 2 ); PathCategory( FinQuiver( "Delta(C0,C1,C2)[id:C1-≻C0,s:C0-≻C1,t:C0-≻C1, is:C2-≻C1,it:C2-≻C1, ps:C1-≻C2,pt:C1-≻C2,mu:C1-≻C2]" ) ) / [ s⋅id = id(C0), t⋅id = id(C0), ps⋅is = id(C1), ... ] gap> DefiningRelations( Delta2 ); [ [ s⋅id:(C0) -≻ (C0), id(C0):(C0) -≻ (C0) ], [ t⋅id:(C0) -≻ (C0), id(C0):(C0) -≻ (C0) ], [ ps⋅is:(C1) -≻ (C1), id(C1):(C1) -≻ (C1) ], [ pt⋅it:(C1) -≻ (C1), id(C1):(C1) -≻ (C1) ], [ is⋅id:(C2) -≻ (C0), it⋅id:(C2) -≻ (C0) ], [ pt⋅is:(C1) -≻ (C1), id⋅t:(C1) -≻ (C1) ], [ ps⋅it:(C1) -≻ (C1), id⋅s:(C1) -≻ (C1) ], [ s⋅pt:(C0) -≻ (C2), t⋅ps:(C0) -≻ (C2) ], [ s⋅mu:(C0) -≻ (C2), s⋅ps:(C0) -≻ (C2) ], [ t⋅mu:(C0) -≻ (C2), t⋅pt:(C0) -≻ (C2) ], [ mu⋅is:(C1) -≻ (C1), id(C1):(C1) -≻ (C1) ], [ mu⋅it:(C1) -≻ (C1), id(C1):(C1) -≻ (C1) ] ] gap> Size( Delta2 ); 31 gap> Delta2_op := OppositeFiniteCategory( Delta2 ); Opposite( PathCategory( FinQuiver( "Delta(C0,C1,C2)[id:C1-≻C0,s:C0-≻C1,t:C0-≻C1, is:C2-≻C1,it:C2-≻C1, ps:C1-≻C2,pt:C1-≻C2,mu:C1-≻C2]" ) ) / [ s⋅id = id(C0), t⋅id = id(C0), ps⋅is = id(C1), ... ] ) gap> IsIdenticalObj( OppositeFiniteCategory( Delta2_op ), Delta2 ); true
generated by GAPDoc2HTML