A \(6\)-tuple \(( \mathbf{C}, \otimes, 1, \alpha, \lambda, \rho )\) consisting of
a category \(\mathbf{C}\),
a functor \(\otimes: \mathbf{C} \times \mathbf{C} \rightarrow \mathbf{C}\) compatible with the congruence of morphisms,
an object \(1 \in \mathbf{C}\),
a natural isomorphism \(\alpha_{a,b,c}: a \otimes (b \otimes c) \cong (a \otimes b) \otimes c\),
a natural isomorphism \(\lambda_{a}: 1 \otimes a \cong a\),
a natural isomorphism \(\rho_{a}: a \otimes 1 \cong a\),
is called a monoidal category, if
for all objects \(a,b,c,d\), the pentagon identity holds:
\((\alpha_{a,b,c} \otimes \mathrm{id}_d) \circ \alpha_{a,b \otimes c, d} \circ ( \mathrm{id}_a \otimes \alpha_{b,c,d} ) \sim \alpha_{a \otimes b, c, d} \circ \alpha_{a,b,c \otimes d}\),
for all objects \(a,c\), the triangle identity holds:
\(( \rho_a \otimes \mathrm{id}_c ) \circ \alpha_{a,1,c} \sim \mathrm{id}_a \otimes \lambda_c\).
The corresponding GAP property is given by IsMonoidalCategory
.
‣ TensorProductOnMorphisms ( alpha, beta ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(a \otimes b, a' \otimes b')\)
The arguments are two morphisms \(\alpha: a \rightarrow a', \beta: b \rightarrow b'\). The output is the tensor product \(\alpha \otimes \beta\).
‣ TensorProductOnMorphismsWithGivenTensorProducts ( s, alpha, beta, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(a \otimes b, a' \otimes b')\)
The arguments are an object \(s = a \otimes b\), two morphisms \(\alpha: a \rightarrow a', \beta: b \rightarrow b'\), and an object \(r = a' \otimes b'\). The output is the tensor product \(\alpha \otimes \beta\).
‣ AssociatorRightToLeft ( a, b, c ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( a \otimes (b \otimes c), (a \otimes b) \otimes c )\).
The arguments are three objects \(a,b,c\). The output is the associator \(\alpha_{a,(b,c)}: a \otimes (b \otimes c) \rightarrow (a \otimes b) \otimes c\).
‣ AssociatorRightToLeftWithGivenTensorProducts ( s, a, b, c, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( a \otimes (b \otimes c), (a \otimes b) \otimes c )\).
The arguments are an object \(s = a \otimes (b \otimes c)\), three objects \(a,b,c\), and an object \(r = (a \otimes b) \otimes c\). The output is the associator \(\alpha_{a,(b,c)}: a \otimes (b \otimes c) \rightarrow (a \otimes b) \otimes c\).
‣ AssociatorLeftToRight ( a, b, c ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( (a \otimes b) \otimes c \rightarrow a \otimes (b \otimes c) )\).
The arguments are three objects \(a,b,c\). The output is the associator \(\alpha_{(a,b),c}: (a \otimes b) \otimes c \rightarrow a \otimes (b \otimes c)\).
‣ AssociatorLeftToRightWithGivenTensorProducts ( s, a, b, c, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( (a \otimes b) \otimes c \rightarrow a \otimes (b \otimes c) )\).
The arguments are an object \(s = (a \otimes b) \otimes c\), three objects \(a,b,c\), and an object \(r = a \otimes (b \otimes c)\). The output is the associator \(\alpha_{(a,b),c}: (a \otimes b) \otimes c \rightarrow a \otimes (b \otimes c)\).
‣ LeftUnitor ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(1 \otimes a, a)\)
The argument is an object \(a\). The output is the left unitor \(\lambda_a: 1 \otimes a \rightarrow a\).
‣ LeftUnitorWithGivenTensorProduct ( a, s ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(1 \otimes a, a)\)
The arguments are an object \(a\) and an object \(s = 1 \otimes a\). The output is the left unitor \(\lambda_a: 1 \otimes a \rightarrow a\).
‣ LeftUnitorInverse ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(a, 1 \otimes a)\)
The argument is an object \(a\). The output is the inverse of the left unitor \(\lambda_a^{-1}: a \rightarrow 1 \otimes a\).
‣ LeftUnitorInverseWithGivenTensorProduct ( a, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(a, 1 \otimes a)\)
The argument is an object \(a\) and an object \(r = 1 \otimes a\). The output is the inverse of the left unitor \(\lambda_a^{-1}: a \rightarrow 1 \otimes a\).
‣ RightUnitor ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(a \otimes 1, a)\)
The argument is an object \(a\). The output is the right unitor \(\rho_a: a \otimes 1 \rightarrow a\).
‣ RightUnitorWithGivenTensorProduct ( a, s ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(a \otimes 1, a)\)
The arguments are an object \(a\) and an object \(s = a \otimes 1\). The output is the right unitor \(\rho_a: a \otimes 1 \rightarrow a\).
‣ RightUnitorInverse ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(a, a \otimes 1)\)
The argument is an object \(a\). The output is the inverse of the right unitor \(\rho_a^{-1}: a \rightarrow a \otimes 1\).
‣ RightUnitorInverseWithGivenTensorProduct ( a, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(a, a \otimes 1)\)
The arguments are an object \(a\) and an object \(r = a \otimes 1\). The output is the inverse of the right unitor \(\rho_a^{-1}: a \rightarrow a \otimes 1\).
‣ TensorProductOnObjects ( a, b ) | ( operation ) |
Returns: an object
The arguments are two objects \(a, b\). The output is the tensor product \(a \otimes b\).
‣ TensorUnit ( C ) | ( attribute ) |
Returns: an object
The argument is a category \(\mathbf{C}\). The output is the tensor unit \(1\) of \(\mathbf{C}\).
‣ LeftDistributivityExpanding ( a, L ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( a \otimes (b_1 \oplus \dots \oplus b_n), (a \otimes b_1) \oplus \dots \oplus (a \otimes b_n) )\)
The arguments are an object \(a\) and a list of objects \(L = (b_1, \dots, b_n)\). The output is the left distributivity morphism \(a \otimes (b_1 \oplus \dots \oplus b_n) \rightarrow (a \otimes b_1) \oplus \dots \oplus (a \otimes b_n)\).
‣ LeftDistributivityExpandingWithGivenObjects ( s, a, L, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\)
The arguments are an object \(s = a \otimes (b_1 \oplus \dots \oplus b_n)\), an object \(a\), a list of objects \(L = (b_1, \dots, b_n)\), and an object \(r = (a \otimes b_1) \oplus \dots \oplus (a \otimes b_n)\). The output is the left distributivity morphism \(s \rightarrow r\).
‣ LeftDistributivityFactoring ( a, L ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( (a \otimes b_1) \oplus \dots \oplus (a \otimes b_n), a \otimes (b_1 \oplus \dots \oplus b_n) )\)
The arguments are an object \(a\) and a list of objects \(L = (b_1, \dots, b_n)\). The output is the left distributivity morphism \((a \otimes b_1) \oplus \dots \oplus (a \otimes b_n) \rightarrow a \otimes (b_1 \oplus \dots \oplus b_n)\).
‣ LeftDistributivityFactoringWithGivenObjects ( s, a, L, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\)
The arguments are an object \(s = (a \otimes b_1) \oplus \dots \oplus (a \otimes b_n)\), an object \(a\), a list of objects \(L = (b_1, \dots, b_n)\), and an object \(r = a \otimes (b_1 \oplus \dots \oplus b_n)\). The output is the left distributivity morphism \(s \rightarrow r\).
‣ RightDistributivityExpanding ( L, a ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( (b_1 \oplus \dots \oplus b_n) \otimes a, (b_1 \otimes a) \oplus \dots \oplus (b_n \otimes a) )\)
The arguments are a list of objects \(L = (b_1, \dots, b_n)\) and an object \(a\). The output is the right distributivity morphism \((b_1 \oplus \dots \oplus b_n) \otimes a \rightarrow (b_1 \otimes a) \oplus \dots \oplus (b_n \otimes a)\).
‣ RightDistributivityExpandingWithGivenObjects ( s, L, a, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\)
The arguments are an object \(s = (b_1 \oplus \dots \oplus b_n) \otimes a\), a list of objects \(L = (b_1, \dots, b_n)\), an object \(a\), and an object \(r = (b_1 \otimes a) \oplus \dots \oplus (b_n \otimes a)\). The output is the right distributivity morphism \(s \rightarrow r\).
‣ RightDistributivityFactoring ( L, a ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( (b_1 \otimes a) \oplus \dots \oplus (b_n \otimes a), (b_1 \oplus \dots \oplus b_n) \otimes a)\)
The arguments are a list of objects \(L = (b_1, \dots, b_n)\) and an object \(a\). The output is the right distributivity morphism \((b_1 \otimes a) \oplus \dots \oplus (b_n \otimes a) \rightarrow (b_1 \oplus \dots \oplus b_n) \otimes a \).
‣ RightDistributivityFactoringWithGivenObjects ( s, L, a, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\)
The arguments are an object \(s = (b_1 \otimes a) \oplus \dots \oplus (b_n \otimes a)\), a list of objects \(L = (b_1, \dots, b_n)\), an object \(a\), and an object \(r = (b_1 \oplus \dots \oplus b_n) \otimes a\). The output is the right distributivity morphism \(s \rightarrow r\).
A monoidal category \(\mathbf{C}\) equipped with a natural isomorphism \(B_{a,b}: a \otimes b \cong b \otimes a\) is called a braided monoidal category if
\(\lambda_a \circ B_{a,1} \sim \rho_a\),
\((B_{c,a} \otimes \mathrm{id}_b) \circ \alpha_{c,a,b} \circ B_{a \otimes b,c} \sim \alpha_{a,c,b} \circ ( \mathrm{id}_a \otimes B_{b,c}) \circ \alpha^{-1}_{a,b,c}\),
\(( \mathrm{id}_b \otimes B_{c,a} ) \circ \alpha^{-1}_{b,c,a} \circ B_{a,b \otimes c} \sim \alpha^{-1}_{b,a,c} \circ (B_{a,b} \otimes \mathrm{id}_c) \circ \alpha_{a,b,c}\).
The corresponding GAP property is given by IsBraidedMonoidalCategory
.
‣ Braiding ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( a \otimes b, b \otimes a )\).
The arguments are two objects \(a,b\). The output is the braiding \( B_{a,b}: a \otimes b \rightarrow b \otimes a\).
‣ BraidingWithGivenTensorProducts ( s, a, b, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( a \otimes b, b \otimes a )\).
The arguments are an object \(s = a \otimes b\), two objects \(a,b\), and an object \(r = b \otimes a\). The output is the braiding \( B_{a,b}: a \otimes b \rightarrow b \otimes a\).
‣ BraidingInverse ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( b \otimes a, a \otimes b )\).
The arguments are two objects \(a,b\). The output is the inverse braiding \( B_{a,b}^{-1}: b \otimes a \rightarrow a \otimes b\).
‣ BraidingInverseWithGivenTensorProducts ( s, a, b, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( b \otimes a, a \otimes b )\).
The arguments are an object \(s = b \otimes a\), two objects \(a,b\), and an object \(r = a \otimes b\). The output is the inverse braiding \( B_{a,b}^{-1}: b \otimes a \rightarrow a \otimes b\).
A braided monoidal category \(\mathbf{C}\) is called symmetric monoidal category if \(B_{a,b}^{-1} \sim B_{b,a}\). The corresponding GAP property is given by IsSymmetricMonoidalCategory
.
A monoidal category \(\mathbf{C}\) which has for each functor \(- \otimes b: \mathbf{C} \rightarrow \mathbf{C}\) a right adjoint (denoted by \(\mathrm{\underline{Hom}_\ell}(b,-)\)) is called a left closed monoidal category.
If no operations involving left duals are installed manually, the left dual objects will be derived as \(a^\vee \coloneqq \mathrm{\underline{Hom}_\ell}(a,1)\).
The corresponding GAP property is called IsLeftClosedMonoidalCategory
.
‣ LeftInternalHomOnObjects ( a, b ) | ( operation ) |
Returns: an object
The arguments are two objects \(a,b\). The output is the internal hom object \(\mathrm{\underline{Hom}_\ell}(a,b)\).
‣ LeftInternalHomOnMorphisms ( alpha, beta ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{Hom}_\ell}(a',b), \mathrm{\underline{Hom}_\ell}(a,b') )\)
The arguments are two morphisms \(\alpha: a \rightarrow a', \beta: b \rightarrow b'\). The output is the internal hom morphism \(\mathrm{\underline{Hom}_\ell}(\alpha,\beta): \mathrm{\underline{Hom}_\ell}(a',b) \rightarrow \mathrm{\underline{Hom}_\ell}(a,b')\).
‣ LeftInternalHomOnMorphismsWithGivenLeftInternalHoms ( s, alpha, beta, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\)
The arguments are an object \(s = \mathrm{\underline{Hom}_\ell}(a',b)\), two morphisms \(\alpha: a \rightarrow a', \beta: b \rightarrow b'\), and an object \(r = \mathrm{\underline{Hom}_\ell}(a,b')\). The output is the internal hom morphism \(\mathrm{\underline{Hom}_\ell}(\alpha,\beta): \mathrm{\underline{Hom}_\ell}(a',b) \rightarrow \mathrm{\underline{Hom}_\ell}(a,b')\).
‣ LeftClosedMonoidalEvaluationMorphism ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{Hom}_\ell}(a,b) \otimes a, b )\).
The arguments are two objects \(a, b\). The output is the evaluation morphism \(\mathrm{ev}_{a,b}: \mathrm{\underline{Hom}_\ell}(a,b) \otimes a \rightarrow b\), i.e., the counit of the tensor hom adjunction.
‣ LeftClosedMonoidalEvaluationMorphismWithGivenSource ( a, b, s ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, b )\).
The arguments are two objects \(a,b\) and an object \(s = \mathrm{\underline{Hom}_\ell}(a,b) \otimes a\). The output is the evaluation morphism \(\mathrm{ev}_{a,b}: \mathrm{\underline{Hom}_\ell}(a,b) \otimes a \rightarrow b\), i.e., the counit of the tensor hom adjunction.
‣ LeftClosedMonoidalCoevaluationMorphism ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( b, \mathrm{\underline{Hom}_\ell}(a, b \otimes a) )\).
The arguments are two objects \(a,b\). The output is the coevaluation morphism \(\mathrm{coev}_{a,b}: b \rightarrow \mathrm{\underline{Hom}_\ell}(a, b \otimes a)\), i.e., the unit of the tensor hom adjunction.
‣ LeftClosedMonoidalCoevaluationMorphismWithGivenRange ( a, b, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( b, r )\).
The arguments are two objects \(a,b\) and an object \(r = \mathrm{\underline{Hom}_\ell}(a, b \otimes a)\). The output is the coevaluation morphism \(\mathrm{coev}_{a,b}: b \rightarrow \mathrm{\underline{Hom}_\ell}(a, b \otimes a)\), i.e., the unit of the tensor hom adjunction.
‣ TensorProductToLeftInternalHomAdjunctMorphism ( a, b, f ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( a, \mathrm{\underline{Hom}_\ell}(b,c) )\).
The arguments are two objects \(a,b\) and a morphism \(f: a \otimes b \rightarrow c\). The output is a morphism \(g: a \rightarrow \mathrm{\underline{Hom}_\ell}(b,c)\) corresponding to \(f\) under the tensor hom adjunction.
‣ TensorProductToLeftInternalHomAdjunctMorphismWithGivenLeftInternalHom ( a, b, f, i ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( a, i )\).
The arguments are two objects \(a,b\), a morphism \(f: a \otimes b \rightarrow c\) and an object \(i = \mathrm{\underline{Hom}_\ell}(b,c)\). The output is a morphism \(g: a \rightarrow \mathrm{\underline{Hom}_\ell}(b,c)\) corresponding to \(f\) under the tensor hom adjunction.
‣ LeftInternalHomToTensorProductAdjunctMorphism ( b, c, g ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(a \otimes b, c)\).
The arguments are two objects \(b,c\) and a morphism \(g: a \rightarrow \mathrm{\underline{Hom}_\ell}(b,c)\). The output is a morphism \(f: a \otimes b \rightarrow c\) corresponding to \(g\) under the tensor hom adjunction.
‣ LeftInternalHomToTensorProductAdjunctMorphismWithGivenTensorProduct ( b, c, g, t ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(t, c)\).
The arguments are two objects \(b,c\), a morphism \(g: a \rightarrow \mathrm{\underline{Hom}_\ell}(b,c)\) and an object \(t = a \otimes b\). The output is a morphism \(f: a \otimes b \rightarrow c\) corresponding to \(g\) under the tensor hom adjunction.
‣ LeftClosedMonoidalPreComposeMorphism ( a, b, c ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{Hom}_\ell}(a,b) \otimes \mathrm{\underline{Hom}_\ell}(b,c), \mathrm{\underline{Hom}_\ell}(a,c) )\).
The arguments are three objects \(a,b,c\). The output is the precomposition morphism \(\mathrm{LeftClosedMonoidalPreComposeMorphism}_{a,b,c}: \mathrm{\underline{Hom}_\ell}(a,b) \otimes \mathrm{\underline{Hom}_\ell}(b,c) \rightarrow \mathrm{\underline{Hom}_\ell}(a,c)\).
‣ LeftClosedMonoidalPreComposeMorphismWithGivenObjects ( s, a, b, c, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are an object \(s = \mathrm{\underline{Hom}_\ell}(a,b) \otimes \mathrm{\underline{Hom}_\ell}(b,c)\), three objects \(a,b,c\), and an object \(r = \mathrm{\underline{Hom}_\ell}(a,c)\). The output is the precomposition morphism \(\mathrm{LeftClosedMonoidalPreComposeMorphismWithGivenObjects}_{a,b,c}: \mathrm{\underline{Hom}_\ell}(a,b) \otimes \mathrm{\underline{Hom}_\ell}(b,c) \rightarrow \mathrm{\underline{Hom}_\ell}(a,c)\).
‣ LeftClosedMonoidalPostComposeMorphism ( a, b, c ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{Hom}_\ell}(b,c) \otimes \mathrm{\underline{Hom}_\ell}(a,b), \mathrm{\underline{Hom}_\ell}(a,c) )\).
The arguments are three objects \(a,b,c\). The output is the postcomposition morphism \(\mathrm{LeftClosedMonoidalPostComposeMorphism}_{a,b,c}: \mathrm{\underline{Hom}_\ell}(b,c) \otimes \mathrm{\underline{Hom}_\ell}(a,b) \rightarrow \mathrm{\underline{Hom}_\ell}(a,c)\).
‣ LeftClosedMonoidalPostComposeMorphismWithGivenObjects ( s, a, b, c, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are an object \(s = \mathrm{\underline{Hom}_\ell}(b,c) \otimes \mathrm{\underline{Hom}_\ell}(a,b)\), three objects \(a,b,c\), and an object \(r = \mathrm{\underline{Hom}_\ell}(a,c)\). The output is the postcomposition morphism \(\mathrm{LeftClosedMonoidalPostComposeMorphismWithGivenObjects}_{a,b,c}: \mathrm{\underline{Hom}_\ell}(b,c) \otimes \mathrm{\underline{Hom}_\ell}(a,b) \rightarrow \mathrm{\underline{Hom}_\ell}(a,c)\).
‣ LeftDualOnObjects ( a ) | ( attribute ) |
Returns: an object
The argument is an object \(a\). The output is its dual object \(a^{\vee}\).
‣ LeftDualOnMorphisms ( alpha ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}( b^{\vee}, a^{\vee} )\).
The argument is a morphism \(\alpha: a \rightarrow b\). The output is its dual morphism \(\alpha^{\vee}: b^{\vee} \rightarrow a^{\vee}\).
‣ LeftDualOnMorphismsWithGivenLeftDuals ( s, alpha, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The argument is an object \(s = b^{\vee}\), a morphism \(\alpha: a \rightarrow b\), and an object \(r = a^{\vee}\). The output is the dual morphism \(\alpha^{\vee}: b^{\vee} \rightarrow a^{\vee}\).
‣ LeftClosedMonoidalEvaluationForLeftDual ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}( a^{\vee} \otimes a, 1 )\).
The argument is an object \(a\). The output is the evaluation morphism \(\mathrm{ev}_{a}: a^{\vee} \otimes a \rightarrow 1\).
‣ LeftClosedMonoidalEvaluationForLeftDualWithGivenTensorProduct ( s, a, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are an object \(s = a^{\vee} \otimes a\), an object \(a\), and an object \(r = 1\). The output is the evaluation morphism \(\mathrm{ev}_{a}: a^{\vee} \otimes a \rightarrow 1\).
‣ MorphismToLeftBidual ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(a, (a^{\vee})^{\vee})\).
The argument is an object \(a\). The output is the morphism to the bidual \(a \rightarrow (a^{\vee})^{\vee}\).
‣ MorphismToLeftBidualWithGivenLeftBidual ( a, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(a, r)\).
The arguments are an object \(a\), and an object \(r = (a^{\vee})^{\vee}\). The output is the morphism to the bidual \(a \rightarrow (a^{\vee})^{\vee}\).
‣ TensorProductLeftInternalHomCompatibilityMorphism ( list ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{Hom}_\ell}(a,a') \otimes \mathrm{\underline{Hom}_\ell}(b,b'), \mathrm{\underline{Hom}_\ell}(a \otimes b,a' \otimes b'))\).
The argument is a list of four objects \([ a, a', b, b' ]\). The output is the natural morphism \(\mathrm{TensorProductLeftInternalHomCompatibilityMorphism}_{a,a',b,b'}: \mathrm{\underline{Hom}_\ell}(a,a') \otimes \mathrm{\underline{Hom}_\ell}(b,b') \rightarrow \mathrm{\underline{Hom}_\ell}(a \otimes b,a' \otimes b')\).
‣ TensorProductLeftInternalHomCompatibilityMorphismWithGivenObjects ( s, list, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are a list of four objects \([ a, a', b, b' ]\), and two objects \(s = \mathrm{\underline{Hom}_\ell}(a,a') \otimes \mathrm{\underline{Hom}_\ell}(b,b')\) and \(r = \mathrm{\underline{Hom}_\ell}(a \otimes b,a' \otimes b')\). The output is the natural morphism \(\mathrm{TensorProductLeftInternalHomCompatibilityMorphismWithGivenObjects}_{a,a',b,b'}: \mathrm{\underline{Hom}_\ell}(a,a') \otimes \mathrm{\underline{Hom}_\ell}(b,b') \rightarrow \mathrm{\underline{Hom}_\ell}(a \otimes b,a' \otimes b')\).
‣ TensorProductLeftDualityCompatibilityMorphism ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( a^{\vee} \otimes b^{\vee}, (a \otimes b)^{\vee} )\).
The arguments are two objects \(a,b\). The output is the natural morphism \(\mathrm{TensorProductLeftDualityCompatibilityMorphism}: a^{\vee} \otimes b^{\vee} \rightarrow (a \otimes b)^{\vee}\).
‣ TensorProductLeftDualityCompatibilityMorphismWithGivenObjects ( s, a, b, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are an object \(s = a^{\vee} \otimes b^{\vee}\), two objects \(a,b\), and an object \(r = (a \otimes b)^{\vee}\). The output is the natural morphism \(\mathrm{TensorProductLeftDualityCompatibilityMorphismWithGivenObjects}_{a,b}: a^{\vee} \otimes b^{\vee} \rightarrow (a \otimes b)^{\vee}\).
‣ MorphismFromTensorProductToLeftInternalHom ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( a^{\vee} \otimes b, \mathrm{\underline{Hom}_\ell}(a,b) )\).
The arguments are two objects \(a,b\). The output is the natural morphism \(\mathrm{MorphismFromTensorProductToLeftInternalHom}_{a,b}: a^{\vee} \otimes b \rightarrow \mathrm{\underline{Hom}_\ell}(a,b)\).
‣ MorphismFromTensorProductToLeftInternalHomWithGivenObjects ( s, a, b, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are an object \(s = a^{\vee} \otimes b\), two objects \(a,b\), and an object \(r = \mathrm{\underline{Hom}_\ell}(a,b)\). The output is the natural morphism \(\mathrm{MorphismFromTensorProductToLeftInternalHomWithGivenObjects}_{a,b}: a^{\vee} \otimes b \rightarrow \mathrm{\underline{Hom}_\ell}(a,b)\).
‣ IsomorphismFromLeftDualObjectToLeftInternalHomIntoTensorUnit ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(a^{\vee}, \mathrm{\underline{Hom}_\ell}(a,1))\).
The argument is an object \(a\). The output is the isomorphism \(\mathrm{IsomorphismFromLeftDualObjectToLeftInternalHomIntoTensorUnit}_{a}: a^{\vee} \rightarrow \mathrm{\underline{Hom}_\ell}(a,1)\).
‣ IsomorphismFromLeftInternalHomIntoTensorUnitToLeftDualObject ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(\mathrm{\underline{Hom}_\ell}(a,1), a^{\vee})\).
The argument is an object \(a\). The output is the isomorphism \(\mathrm{IsomorphismFromLeftInternalHomIntoTensorUnitToLeftDualObject}_{a}: \mathrm{\underline{Hom}_\ell}(a,1) \rightarrow a^{\vee}\).
‣ UniversalPropertyOfLeftDual ( t, a, alpha ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(t, a^{\vee})\).
The arguments are two objects \(t,a\), and a morphism \(\alpha: t \otimes a \rightarrow 1\). The output is the morphism \(t \rightarrow a^{\vee}\) given by the universal property of \(a^{\vee}\).
‣ LeftClosedMonoidalLambdaIntroduction ( alpha ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}( 1, \mathrm{\underline{Hom}_\ell}(a,b) )\).
The argument is a morphism \(\alpha: a \rightarrow b\). The output is the corresponding morphism \(1 \rightarrow \mathrm{\underline{Hom}_\ell}(a,b)\) under the tensor hom adjunction.
‣ LeftClosedMonoidalLambdaElimination ( a, b, alpha ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(a,b)\).
The arguments are two objects \(a,b\), and a morphism \(\alpha: 1 \rightarrow \mathrm{\underline{Hom}_\ell}(a,b)\). The output is a morphism \(a \rightarrow b\) corresponding to \(\alpha\) under the tensor hom adjunction.
‣ IsomorphismFromObjectToLeftInternalHom ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(a, \mathrm{\underline{Hom}_\ell}(1,a))\).
The argument is an object \(a\). The output is the natural isomorphism \(a \rightarrow \mathrm{\underline{Hom}_\ell}(1,a)\).
‣ IsomorphismFromObjectToLeftInternalHomWithGivenLeftInternalHom ( a, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(a, r)\).
The argument is an object \(a\), and an object \(r = \mathrm{\underline{Hom}_\ell}(1,a)\). The output is the natural isomorphism \(a \rightarrow \mathrm{\underline{Hom}_\ell}(1,a)\).
‣ IsomorphismFromLeftInternalHomToObject ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(\mathrm{\underline{Hom}_\ell}(1,a),a)\).
The argument is an object \(a\). The output is the natural isomorphism \(\mathrm{\underline{Hom}_\ell}(1,a) \rightarrow a\).
‣ IsomorphismFromLeftInternalHomToObjectWithGivenLeftInternalHom ( a, s ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(s,a)\).
The argument is an object \(a\), and an object \(s = \mathrm{\underline{Hom}_\ell}(1,a)\). The output is the natural isomorphism \(\mathrm{\underline{Hom}_\ell}(1,a) \rightarrow a\).
A monoidal category \(\mathbf{C}\) which has for each functor \(- \otimes b: \mathbf{C} \rightarrow \mathbf{C}\) a right adjoint (denoted by \(\mathrm{\underline{Hom}_\ell}(b,-)\)) is called a closed monoidal category.
If no operations involving duals are installed manually, the dual objects will be derived as \(a^\vee \coloneqq \mathrm{\underline{Hom}_\ell}(a,1)\).
The corresponding GAP property is called IsClosedMonoidalCategory
.
‣ InternalHomOnObjects ( a, b ) | ( operation ) |
Returns: an object
The arguments are two objects \(a,b\). The output is the internal hom object \(\mathrm{\underline{Hom}}(a,b)\).
‣ InternalHomOnMorphisms ( alpha, beta ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{Hom}}(a',b), \mathrm{\underline{Hom}}(a,b') )\)
The arguments are two morphisms \(\alpha: a \rightarrow a', \beta: b \rightarrow b'\). The output is the internal hom morphism \(\mathrm{\underline{Hom}}(\alpha,\beta): \mathrm{\underline{Hom}}(a',b) \rightarrow \mathrm{\underline{Hom}}(a,b')\).
‣ InternalHomOnMorphismsWithGivenInternalHoms ( s, alpha, beta, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\)
The arguments are an object \(s = \mathrm{\underline{Hom}}(a',b)\), two morphisms \(\alpha: a \rightarrow a', \beta: b \rightarrow b'\), and an object \(r = \mathrm{\underline{Hom}}(a,b')\). The output is the internal hom morphism \(\mathrm{\underline{Hom}}(\alpha,\beta): \mathrm{\underline{Hom}}(a',b) \rightarrow \mathrm{\underline{Hom}}(a,b')\).
‣ ClosedMonoidalRightEvaluationMorphism ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(a \otimes \mathrm{\underline{Hom}}(a,b), b )\).
The arguments are two objects \(a, b\). The output is the right evaluation morphism \(\mathrm{ev}_{a,b}:a \otimes \mathrm{\underline{Hom}}(a,b) \rightarrow b\), i.e., the counit of the tensor hom adjunction.
‣ ClosedMonoidalRightEvaluationMorphismWithGivenSource ( a, b, s ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, b )\).
The arguments are two objects \(a,b\) and an object \(s = a \otimes \mathrm{\underline{Hom}}(a,b)\). The output is the right evaluation morphism \(\mathrm{ev}_{a,b}: a \otimes \mathrm{\underline{Hom}}(a,b) \rightarrow b\), i.e., the counit of the tensor hom adjunction.
‣ ClosedMonoidalRightCoevaluationMorphism ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( b, \mathrm{\underline{Hom}}(a, a \otimes b) )\).
The arguments are two objects \(a,b\). The output is the right coevaluation morphism \(\mathrm{coev}_{a,b}: b \rightarrow \mathrm{\underline{Hom}}(a, a \otimes b)\), i.e., the unit of the tensor hom adjunction.
‣ ClosedMonoidalRightCoevaluationMorphismWithGivenRange ( a, b, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( b, r )\).
The arguments are two objects \(a,b\) and an object \(r = \mathrm{\underline{Hom}}(a, a \otimes b)\). The output is the right coevaluation morphism \(\mathrm{coev}_{a,b}: b \rightarrow \mathrm{\underline{Hom}}(a, a \otimes b)\), i.e., the unit of the tensor hom adjunction.
‣ TensorProductToInternalHomRightAdjunctMorphism ( a, b, f ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( b, \mathrm{\underline{Hom}}(a,c) )\).
The arguments are two objects \(a,b\) and a morphism \(f: a \otimes b \rightarrow c\). The output is a morphism \(g: b \rightarrow \mathrm{\underline{Hom}}(a,c)\) corresponding to \(f\) under the tensor hom adjunction.
‣ TensorProductToInternalHomRightAdjunctMorphismWithGivenInternalHom ( a, b, f, i ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( b, i )\).
The arguments are two objects \(a,b\), a morphism \(f: a \otimes b \rightarrow c\) and an object \(i = \mathrm{\underline{Hom}}(a,c)\). The output is a morphism \(g: b \rightarrow i\) corresponding to \(f\) under the tensor hom adjunction.
‣ TensorProductToInternalHomRightAdjunctionIsomorphism ( a, b, c ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( H(a \otimes b, c), H(b, \mathrm{\underline{Hom}}(a,c)) )\).
The arguments are three objects \(a,b,c\). The output is the tri-natural isomorphism \(H(a \otimes b, c) \to H(b, \mathrm{\underline{Hom}}(a,c))\) in the range category of the homomorphism structure \(H\).
‣ TensorProductToInternalHomRightAdjunctionIsomorphismWithGivenObjects ( s, a, b, c, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are fives objects \(s,a,b,c,r\) where \(s = H(a \otimes b, c)\) and \(r = H(b, \mathrm{\underline{Hom}}(a,c))\). The output is the tri-natural isomorphism \(s \to r\) in the range category of the homomorphism structure \(H\).
‣ InternalHomToTensorProductRightAdjunctMorphism ( a, c, g ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(a \otimes b, c)\).
The arguments are two objects \(a,c\) and a morphism \(g: b \rightarrow \mathrm{\underline{Hom}}(a,c)\). The output is a morphism \(f: a \otimes b \rightarrow c\) corresponding to \(g\) under the tensor hom adjunction.
‣ InternalHomToTensorProductRightAdjunctMorphismWithGivenTensorProduct ( a, c, g, s ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(s, c)\).
The arguments are two objects \(a,c\), a morphism \(g: b \rightarrow \mathrm{\underline{Hom}}(a,c)\) and an object \(s = a \otimes b\). The output is a morphism \(f: s \rightarrow c\) corresponding to \(g\) under the tensor hom adjunction.
‣ InternalHomToTensorProductRightAdjunctionIsomorphism ( a, b, c ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( H(b, \mathrm{\underline{Hom}}(a,c)), H(a \otimes b, c) )\).
The arguments are three objects \(a,b,c\). The output is the tri-natural isomorphism \(H(b, \mathrm{\underline{Hom}}(a,c)) \to H(a \otimes b, c)\) in the range category of the homomorphism structure \(H\).
‣ InternalHomToTensorProductRightAdjunctionIsomorphismWithGivenObjects ( s, a, b, c, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are fives objects \(s,a,b,c,r\) where \(s = H(b, \mathrm{\underline{Hom}}(a,c))\) and \(r = H(a \otimes b, c)\). The output is the tri-natural isomorphism \(s \to r\) in the range category of the homomorphism structure \(H\).
‣ ClosedMonoidalLeftEvaluationMorphism ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{Hom}}(a,b) \otimes a, b )\).
The arguments are two objects \(a, b\). The output is the left evaluation morphism \(\mathrm{ev}_{a,b}: \mathrm{\underline{Hom}}(a,b) \otimes a \rightarrow b\), i.e., the counit of the tensor hom adjunction.
‣ ClosedMonoidalLeftEvaluationMorphismWithGivenSource ( a, b, s ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, b )\).
The arguments are two objects \(a,b\) and an object \(s = \mathrm{\underline{Hom}}(a,b) \otimes a\). The output is the left evaluation morphism \(\mathrm{ev}_{a,b}: \mathrm{\underline{Hom}}(a,b) \otimes a \rightarrow b\), i.e., the counit of the tensor hom adjunction.
‣ ClosedMonoidalLeftCoevaluationMorphism ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( b, \mathrm{\underline{Hom}}(a, b \otimes a) )\).
The arguments are two objects \(a,b\). The output is the left coevaluation morphism \(\mathrm{coev}_{a,b}: b \rightarrow \mathrm{\underline{Hom}}(a, b \otimes a)\), i.e., the unit of the tensor hom adjunction.
‣ ClosedMonoidalLeftCoevaluationMorphismWithGivenRange ( a, b, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( b, r )\).
The arguments are two objects \(a,b\) and an object \(r = \mathrm{\underline{Hom}}(a, b \otimes a)\). The output is the left coevaluation morphism \(\mathrm{coev}_{a,b}: b \rightarrow \mathrm{\underline{Hom}}(a, b \otimes a)\), i.e., the unit of the tensor hom adjunction.
‣ TensorProductToInternalHomLeftAdjunctMorphism ( a, b, f ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( a, \mathrm{\underline{Hom}}(b,c) )\).
The arguments are two objects \(a,b\) and a morphism \(f: a \otimes b \rightarrow c\). The output is a morphism \(g: a \rightarrow \mathrm{\underline{Hom}}(b,c)\) corresponding to \(f\) under the tensor hom adjunction.
‣ TensorProductToInternalHomLeftAdjunctMorphismWithGivenInternalHom ( a, b, f, i ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( a, i )\).
The arguments are two objects \(a,b\), a morphism \(f: a \otimes b \rightarrow c\) and an object \(i = \mathrm{\underline{Hom}}(b,c)\). The output is a morphism \(g: a \rightarrow i\) corresponding to \(f\) under the tensor hom adjunction.
‣ TensorProductToInternalHomLeftAdjunctionIsomorphism ( a, b, c ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( H(a \otimes b, c), H(a, \mathrm{\underline{Hom}}(b,c)) )\).
The arguments are three objects \(a,b,c\). The output is the tri-natural isomorphism \(H(a \otimes b, c) \to H(a, \mathrm{\underline{Hom}}(b,c))\) in the range category of the homomorphism structure \(H\).
‣ TensorProductToInternalHomLeftAdjunctionIsomorphismWithGivenObjects ( s, a, b, c, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are fives objects \(s,a,b,c,r\) where \(s = H(a \otimes b, c)\) and \(r = H(a, \mathrm{\underline{Hom}}(b,c))\). The output is the tri-natural isomorphism \(s \to r\) in the range category of the homomorphism structure \(H\).
‣ InternalHomToTensorProductLeftAdjunctMorphism ( b, c, g ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(a \otimes b, c)\).
The arguments are two objects \(b,c\) and a morphism \(g: a \rightarrow \mathrm{\underline{Hom}}(b,c)\). The output is a morphism \(f: a \otimes b \rightarrow c\) corresponding to \(g\) under the tensor hom adjunction.
‣ InternalHomToTensorProductLeftAdjunctMorphismWithGivenTensorProduct ( b, c, g, s ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(s, c)\).
The arguments are two objects \(b,c\), a morphism \(g: a \rightarrow \mathrm{\underline{Hom}}(b,c)\) and an object \(s = a \otimes b\). The output is a morphism \(f: s \rightarrow c\) corresponding to \(g\) under the tensor hom adjunction.
‣ InternalHomToTensorProductLeftAdjunctionIsomorphism ( a, b, c ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( H(a, \mathrm{\underline{Hom}}(b,c)), H(a \otimes b, c) )\).
The arguments are three objects \(a,b,c\). The output is the tri-natural isomorphism \(H(a, \mathrm{\underline{Hom}}(b,c)) \to H(a \otimes b, c)\) in the range category of the homomorphism structure \(H\).
‣ InternalHomToTensorProductLeftAdjunctionIsomorphismWithGivenObjects ( s, a, b, c, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are fives objects \(s,a,b,c,r\) where \(s = H(a, \mathrm{\underline{Hom}}(b,c))\) and \(r = H(a \otimes b, c)\). The output is the tri-natural isomorphism \(s \to r\) in the range category of the homomorphism structure \(H\).
‣ MonoidalPreComposeMorphism ( a, b, c ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{Hom}}(a,b) \otimes \mathrm{\underline{Hom}}(b,c), \mathrm{\underline{Hom}}(a,c) )\).
The arguments are three objects \(a,b,c\). The output is the precomposition morphism \(\mathrm{MonoidalPreComposeMorphism}_{a,b,c}: \mathrm{\underline{Hom}}(a,b) \otimes \mathrm{\underline{Hom}}(b,c) \rightarrow \mathrm{\underline{Hom}}(a,c)\).
‣ MonoidalPreComposeMorphismWithGivenObjects ( s, a, b, c, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are an object \(s = \mathrm{\underline{Hom}}(a,b) \otimes \mathrm{\underline{Hom}}(b,c)\), three objects \(a,b,c\), and an object \(r = \mathrm{\underline{Hom}}(a,c)\). The output is the precomposition morphism \(\mathrm{MonoidalPreComposeMorphismWithGivenObjects}_{a,b,c}: \mathrm{\underline{Hom}}(a,b) \otimes \mathrm{\underline{Hom}}(b,c) \rightarrow \mathrm{\underline{Hom}}(a,c)\).
‣ MonoidalPostComposeMorphism ( a, b, c ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{Hom}}(b,c) \otimes \mathrm{\underline{Hom}}(a,b), \mathrm{\underline{Hom}}(a,c) )\).
The arguments are three objects \(a,b,c\). The output is the postcomposition morphism \(\mathrm{MonoidalPostComposeMorphism}_{a,b,c}: \mathrm{\underline{Hom}}(b,c) \otimes \mathrm{\underline{Hom}}(a,b) \rightarrow \mathrm{\underline{Hom}}(a,c)\).
‣ MonoidalPostComposeMorphismWithGivenObjects ( s, a, b, c, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are an object \(s = \mathrm{\underline{Hom}}(b,c) \otimes \mathrm{\underline{Hom}}(a,b)\), three objects \(a,b,c\), and an object \(r = \mathrm{\underline{Hom}}(a,c)\). The output is the postcomposition morphism \(\mathrm{MonoidalPostComposeMorphismWithGivenObjects}_{a,b,c}: \mathrm{\underline{Hom}}(b,c) \otimes \mathrm{\underline{Hom}}(a,b) \rightarrow \mathrm{\underline{Hom}}(a,c)\).
‣ DualOnObjects ( a ) | ( attribute ) |
Returns: an object
The argument is an object \(a\). The output is its dual object \(a^{\vee}\).
‣ DualOnMorphisms ( alpha ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}( b^{\vee}, a^{\vee} )\).
The argument is a morphism \(\alpha: a \rightarrow b\). The output is its dual morphism \(\alpha^{\vee}: b^{\vee} \rightarrow a^{\vee}\).
‣ DualOnMorphismsWithGivenDuals ( s, alpha, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The argument is an object \(s = b^{\vee}\), a morphism \(\alpha: a \rightarrow b\), and an object \(r = a^{\vee}\). The output is the dual morphism \(\alpha^{\vee}: b^{\vee} \rightarrow a^{\vee}\).
‣ EvaluationForDual ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}( a^{\vee} \otimes a, 1 )\).
The argument is an object \(a\). The output is the evaluation morphism \(\mathrm{ev}_{a}: a^{\vee} \otimes a \rightarrow 1\).
‣ EvaluationForDualWithGivenTensorProduct ( s, a, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are an object \(s = a^{\vee} \otimes a\), an object \(a\), and an object \(r = 1\). The output is the evaluation morphism \(\mathrm{ev}_{a}: a^{\vee} \otimes a \rightarrow 1\).
‣ MorphismToBidual ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(a, (a^{\vee})^{\vee})\).
The argument is an object \(a\). The output is the morphism to the bidual \(a \rightarrow (a^{\vee})^{\vee}\).
‣ MorphismToBidualWithGivenBidual ( a, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(a, r)\).
The arguments are an object \(a\), and an object \(r = (a^{\vee})^{\vee}\). The output is the morphism to the bidual \(a \rightarrow (a^{\vee})^{\vee}\).
‣ TensorProductInternalHomCompatibilityMorphism ( list ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b'), \mathrm{\underline{Hom}}(a \otimes b,a' \otimes b'))\).
The argument is a list of four objects \([ a, a', b, b' ]\). The output is the natural morphism \(\mathrm{TensorProductInternalHomCompatibilityMorphism}_{a,a',b,b'}: \mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b') \rightarrow \mathrm{\underline{Hom}}(a \otimes b,a' \otimes b')\).
‣ TensorProductInternalHomCompatibilityMorphismWithGivenObjects ( s, list, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are a list of four objects \([ a, a', b, b' ]\), and two objects \(s = \mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b')\) and \(r = \mathrm{\underline{Hom}}(a \otimes b,a' \otimes b')\). The output is the natural morphism \(\mathrm{TensorProductInternalHomCompatibilityMorphismWithGivenObjects}_{a,a',b,b'}: \mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b') \rightarrow \mathrm{\underline{Hom}}(a \otimes b,a' \otimes b')\).
‣ TensorProductDualityCompatibilityMorphism ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( a^{\vee} \otimes b^{\vee}, (a \otimes b)^{\vee} )\).
The arguments are two objects \(a,b\). The output is the natural morphism \(\mathrm{TensorProductDualityCompatibilityMorphism}: a^{\vee} \otimes b^{\vee} \rightarrow (a \otimes b)^{\vee}\).
‣ TensorProductDualityCompatibilityMorphismWithGivenObjects ( s, a, b, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are an object \(s = a^{\vee} \otimes b^{\vee}\), two objects \(a,b\), and an object \(r = (a \otimes b)^{\vee}\). The output is the natural morphism \(\mathrm{TensorProductDualityCompatibilityMorphismWithGivenObjects}_{a,b}: a^{\vee} \otimes b^{\vee} \rightarrow (a \otimes b)^{\vee}\).
‣ MorphismFromTensorProductToInternalHom ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( a^{\vee} \otimes b, \mathrm{\underline{Hom}}(a,b) )\).
The arguments are two objects \(a,b\). The output is the natural morphism \(\mathrm{MorphismFromTensorProductToInternalHom}_{a,b}: a^{\vee} \otimes b \rightarrow \mathrm{\underline{Hom}}(a,b)\).
‣ MorphismFromTensorProductToInternalHomWithGivenObjects ( s, a, b, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are an object \(s = a^{\vee} \otimes b\), two objects \(a,b\), and an object \(r = \mathrm{\underline{Hom}}(a,b)\). The output is the natural morphism \(\mathrm{MorphismFromTensorProductToInternalHomWithGivenObjects}_{a,b}: a^{\vee} \otimes b \rightarrow \mathrm{\underline{Hom}}(a,b)\).
‣ IsomorphismFromDualObjectToInternalHomIntoTensorUnit ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(a^{\vee}, \mathrm{\underline{Hom}}(a,1))\).
The argument is an object \(a\). The output is the isomorphism \(\mathrm{IsomorphismFromDualObjectToInternalHomIntoTensorUnit}_{a}: a^{\vee} \rightarrow \mathrm{\underline{Hom}}(a,1)\).
‣ IsomorphismFromInternalHomIntoTensorUnitToDualObject ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(\mathrm{\underline{Hom}}(a,1), a^{\vee})\).
The argument is an object \(a\). The output is the isomorphism \(\mathrm{IsomorphismFromInternalHomIntoTensorUnitToDualObject}_{a}: \mathrm{\underline{Hom}}(a,1) \rightarrow a^{\vee}\).
‣ UniversalPropertyOfDual ( t, a, alpha ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(t, a^{\vee})\).
The arguments are two objects \(t,a\), and a morphism \(\alpha: t \otimes a \rightarrow 1\). The output is the morphism \(t \rightarrow a^{\vee}\) given by the universal property of \(a^{\vee}\).
‣ LambdaIntroduction ( alpha ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}( 1, \mathrm{\underline{Hom}}(a,b) )\).
The argument is a morphism \(\alpha: a \rightarrow b\). The output is the corresponding morphism \(1 \rightarrow \mathrm{\underline{Hom}}(a,b)\) under the tensor hom adjunction.
‣ LambdaElimination ( a, b, alpha ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(a,b)\).
The arguments are two objects \(a,b\), and a morphism \(\alpha: 1 \rightarrow \mathrm{\underline{Hom}}(a,b)\). The output is a morphism \(a \rightarrow b\) corresponding to \(\alpha\) under the tensor hom adjunction.
‣ IsomorphismFromObjectToInternalHom ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(a, \mathrm{\underline{Hom}}(1,a))\).
The argument is an object \(a\). The output is the natural isomorphism \(a \rightarrow \mathrm{\underline{Hom}}(1,a)\).
‣ IsomorphismFromObjectToInternalHomWithGivenInternalHom ( a, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(a, r)\).
The argument is an object \(a\), and an object \(r = \mathrm{\underline{Hom}}(1,a)\). The output is the natural isomorphism \(a \rightarrow \mathrm{\underline{Hom}}(1,a)\).
‣ IsomorphismFromInternalHomToObject ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(\mathrm{\underline{Hom}}(1,a),a)\).
The argument is an object \(a\). The output is the natural isomorphism \(\mathrm{\underline{Hom}}(1,a) \rightarrow a\).
‣ IsomorphismFromInternalHomToObjectWithGivenInternalHom ( a, s ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(s,a)\).
The argument is an object \(a\), and an object \(s = \mathrm{\underline{Hom}}(1,a)\). The output is the natural isomorphism \(\mathrm{\underline{Hom}}(1,a) \rightarrow a\).
A monoidal category \(\mathbf{C}\) which has for each functor \(- \otimes b: \mathbf{C} \rightarrow \mathbf{C}\) a left adjoint (denoted by \(\mathrm{\underline{coHom}}(-,b)\)) is called a left coclosed monoidal category.
If no operations involving left coduals are installed manually, the left codual objects will be derived as \(a_\vee \coloneqq \mathrm{\underline{coHom}}(1,a)\).
The corresponding GAP property is called IsLeftCoclosedMonoidalCategory
.
‣ LeftInternalCoHomOnObjects ( a, b ) | ( operation ) |
Returns: an object
The arguments are two objects \(a,b\). The output is the internal cohom object \(\mathrm{\underline{coHom}_\ell}(a,b)\).
‣ LeftInternalCoHomOnMorphisms ( alpha, beta ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{coHom}_\ell}(a,b'), \mathrm{\underline{coHom}_\ell}(a',b) )\)
The arguments are two morphisms \(\alpha: a \rightarrow a', \beta: b \rightarrow b'\). The output is the internal cohom morphism \(\mathrm{\underline{coHom}_\ell}(\alpha,\beta): \mathrm{\underline{coHom}_\ell}(a,b') \rightarrow \mathrm{\underline{coHom}_\ell}(a',b)\).
‣ LeftInternalCoHomOnMorphismsWithGivenLeftInternalCoHoms ( s, alpha, beta, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\)
The arguments are an object \(s = \mathrm{\underline{coHom}_\ell}(a,b')\), two morphisms \(\alpha: a \rightarrow a', \beta: b \rightarrow b'\), and an object \(r = \mathrm{\underline{coHom}_\ell}(a',b)\). The output is the internal cohom morphism \(\mathrm{\underline{coHom}_\ell}(\alpha,\beta): \mathrm{\underline{coHom}_\ell}(a,b') \rightarrow \mathrm{\underline{coHom}_\ell}(a',b)\).
‣ LeftCoclosedMonoidalEvaluationMorphism ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( b, \mathrm{\underline{coHom}_\ell}(b,a) \otimes a )\).
The arguments are two objects \(a, b\). The output is the coclosed evaluation morphism \(\mathrm{coclev}_{a,b}: b \rightarrow \mathrm{\underline{coHom}_\ell}(b,a) \otimes a\), i.e., the unit of the cohom tensor adjunction.
‣ LeftCoclosedMonoidalEvaluationMorphismWithGivenRange ( a, b, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( b, r )\).
The arguments are two objects \(a,b\) and an object \(r = \mathrm{\underline{coHom}_\ell}(b,a) \otimes a\). The output is the coclosed evaluation morphism \(\mathrm{coclev}_{a,b}: b \rightarrow \mathrm{\underline{coHom}_\ell}(b,a) \otimes a\), i.e., the unit of the cohom tensor adjunction.
‣ LeftCoclosedMonoidalCoevaluationMorphism ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{coHom}_\ell}(b \otimes a, a), b )\).
The arguments are two objects \(a,b\). The output is the coclosed coevaluation morphism \(\mathrm{coclcoev}_{a,b}: \mathrm{\underline{coHom}_\ell}(b \otimes a, a) \rightarrow b\), i.e., the counit of the cohom tensor adjunction.
‣ LeftCoclosedMonoidalCoevaluationMorphismWithGivenSource ( a, b, s ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, b )\).
The arguments are two objects \(a,b\) and an object \(s = \mathrm{\underline{coHom}_\ell}(b \otimes a, a)\). The output is the coclosed coevaluation morphism \(\mathrm{coclcoev}_{a,b}: \mathrm{\underline{coHom}_\ell}(b \otimes a, a) \rightarrow b\), i.e., the unit of the cohom tensor adjunction.
‣ TensorProductToLeftInternalCoHomAdjunctMorphism ( b, c, g ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{coHom}_\ell}(a,c), b )\).
The arguments are two objects \(b,c\) and a morphism \(g: a \rightarrow b \otimes c\). The output is a morphism \(f: \mathrm{\underline{coHom}_\ell}(a,c) \rightarrow b\) corresponding to \(g\) under the cohom tensor adjunction.
‣ TensorProductToLeftInternalCoHomAdjunctMorphismWithGivenLeftInternalCoHom ( b, c, g, i ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( i, b )\).
The arguments are two objects \(b,c\), a morphism \(g: a \rightarrow b \otimes c\) and an object \(i = \mathrm{\underline{coHom}_\ell}(a,c)\). The output is a morphism \(f: \mathrm{\underline{coHom}_\ell}(a,c) \rightarrow b\) corresponding to \(g\) under the cohom tensor adjunction.
‣ LeftInternalCoHomToTensorProductAdjunctMorphism ( a, c, f ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(a, b \otimes c)\).
The arguments are two objects \(a,c\) and a morphism \(f: \mathrm{\underline{coHom}_\ell}(a,c) \rightarrow b\). The output is a morphism \(g: a \rightarrow b \otimes c\) corresponding to \(f\) under the cohom tensor adjunction.
‣ LeftInternalCoHomToTensorProductAdjunctMorphismWithGivenTensorProduct ( a, c, f, t ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( a, t )\).
The arguments are two objects \(a,c\), a morphism \(f: \mathrm{\underline{coHom}_\ell}(a,c) \rightarrow b\) and an object \(t = b \otimes c\). The output is a morphism \(g: a \rightarrow b \otimes c\) corresponding to \(f\) under the cohom tensor adjunction.
‣ LeftCoclosedMonoidalPreCoComposeMorphism ( a, b, c ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{coHom}_\ell}(a,c), \mathrm{\underline{coHom}_\ell}(b,c) \otimes \mathrm{\underline{coHom}_\ell}(a,b) )\).
The arguments are three objects \(a,b,c\). The output is the precocomposition morphism \(\mathrm{LeftCoclosedMonoidalPreCoComposeMorphism}_{a,b,c}: \mathrm{\underline{coHom}_\ell}(a,c) \rightarrow \mathrm{\underline{coHom}_\ell}(b,c) \otimes \mathrm{\underline{coHom}_\ell}(a,b)\).
‣ LeftCoclosedMonoidalPreCoComposeMorphismWithGivenObjects ( s, a, b, c, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are an object \(s = \mathrm{\underline{coHom}_\ell}(a,c)\), three objects \(a,b,c\), and an object \(r = \mathrm{\underline{coHom}_\ell}(a,b) \otimes \mathrm{\underline{coHom}_\ell}(b,c)\). The output is the precocomposition morphism \(\mathrm{LeftCoclosedMonoidalPreCoComposeMorphismWithGivenObjects}_{a,b,c}: \mathrm{\underline{coHom}_\ell}(a,c) \rightarrow \mathrm{\underline{coHom}_\ell}(b,c) \otimes \mathrm{\underline{coHom}_\ell}(a,b)\).
‣ LeftCoclosedMonoidalPostCoComposeMorphism ( a, b, c ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{coHom}_\ell}(a,c), \mathrm{\underline{coHom}_\ell}(a,b) \otimes \mathrm{\underline{coHom}_\ell}(b,c) )\).
The arguments are three objects \(a,b,c\). The output is the postcocomposition morphism \(\mathrm{LeftCoclosedMonoidalPostCoComposeMorphism}_{a,b,c}: \mathrm{\underline{coHom}_\ell}(a,c) \rightarrow \mathrm{\underline{coHom}_\ell}(a,b) \otimes \mathrm{\underline{coHom}_\ell}(b,c)\).
‣ LeftCoclosedMonoidalPostCoComposeMorphismWithGivenObjects ( s, a, b, c, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are an object \(s = \mathrm{\underline{coHom}_\ell}(a,c)\), three objects \(a,b,c\), and an object \(r = \mathrm{\underline{coHom}_\ell}(b,c) \otimes \mathrm{\underline{coHom}_\ell}(a,b)\). The output is the postcocomposition morphism \(\mathrm{LeftCoclosedMonoidalPostCoComposeMorphismWithGivenObjects}_{a,b,c}: \mathrm{\underline{coHom}_\ell}(a,c) \rightarrow \mathrm{\underline{coHom}_\ell}(a,b) \otimes \mathrm{\underline{coHom}_\ell}(b,c)\).
‣ LeftCoDualOnObjects ( a ) | ( attribute ) |
Returns: an object
The argument is an object \(a\). The output is its codual object \(a_{\vee}\).
‣ LeftCoDualOnMorphisms ( alpha ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}( b_{\vee}, a_{\vee} )\).
The argument is a morphism \(\alpha: a \rightarrow b\). The output is its codual morphism \(\alpha_{\vee}: b_{\vee} \rightarrow a_{\vee}\).
‣ LeftCoDualOnMorphismsWithGivenLeftCoDuals ( s, alpha, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The argument is an object \(s = b_{\vee}\), a morphism \(\alpha: a \rightarrow b\), and an object \(r = a_{\vee}\). The output is the dual morphism \(\alpha_{\vee}: b^{\vee} \rightarrow a^{\vee}\).
‣ LeftCoclosedMonoidalEvaluationForLeftCoDual ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}( 1, a_{\vee} \otimes a )\).
The argument is an object \(a\). The output is the coclosed evaluation morphism \(\mathrm{coclev}_{a}: 1 \rightarrow a_{\vee} \otimes a\).
‣ LeftCoclosedMonoidalEvaluationForLeftCoDualWithGivenTensorProduct ( s, a, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are an object \(s = 1\), an object \(a\), and an object \(r = a_{\vee} \otimes a\). The output is the coclosed evaluation morphism \(\mathrm{coclev}_{a}: 1 \rightarrow a_{\vee} \otimes a\).
‣ MorphismFromLeftCoBidual ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}((a_{\vee})_{\vee}, a)\).
The argument is an object \(a\). The output is the morphism from the cobidual \((a_{\vee})_{\vee} \rightarrow a\).
‣ MorphismFromLeftCoBidualWithGivenLeftCoBidual ( a, s ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(s, a)\).
The arguments are an object \(a\), and an object \(s = (a_{\vee})_{\vee}\). The output is the morphism from the cobidual \((a_{\vee})_{\vee} \rightarrow a\).
‣ LeftInternalCoHomTensorProductCompatibilityMorphism ( list ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{coHom}_\ell}(a \otimes a', b \otimes b'), \mathrm{\underline{coHom}_\ell}(a,b) \otimes \mathrm{\underline{coHom}_\ell}(a',b'))\).
The argument is a list of four objects \([ a, a', b, b' ]\). The output is the natural morphism \(\mathrm{LeftInternalCoHomTensorProductCompatibilityMorphism}_{a,a',b,b'}: \mathrm{\underline{coHom}_\ell}(a \otimes a', b \otimes b') \rightarrow \mathrm{\underline{coHom}_\ell}(a,b) \otimes \mathrm{\underline{coHom}_\ell}(a',b')\).
‣ LeftInternalCoHomTensorProductCompatibilityMorphismWithGivenObjects ( s, list, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are a list of four objects \([ a, a', b, b' ]\), and two objects \(s = \mathrm{\underline{coHom}_\ell}(a \otimes a', b \otimes b')\) and \(r = \mathrm{\underline{coHom}_\ell}(a,b) \otimes \mathrm{\underline{coHom}_\ell}(a',b')\). The output is the natural morphism \(\mathrm{LeftInternalCoHomTensorProductCompatibilityMorphismWithGivenObjects}_{a,a',b,b'}: \mathrm{\underline{coHom}_\ell}(a \otimes a', b \otimes b') \rightarrow \mathrm{\underline{coHom}_\ell}(a,b) \otimes \mathrm{\underline{coHom}_\ell}(a',b')\).
‣ LeftCoDualityTensorProductCompatibilityMorphism ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( (a \otimes b)_{\vee}, a_{\vee} \otimes b_{\vee} )\).
The arguments are two objects \(a,b\). The output is the natural morphism \(\mathrm{LeftCoDualityTensorProductCompatibilityMorphism}: (a \otimes b)_{\vee} \rightarrow a_{\vee} \otimes b_{\vee}\).
‣ LeftCoDualityTensorProductCompatibilityMorphismWithGivenObjects ( s, a, b, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are an object \(s = (a \otimes b)_{\vee}\), two objects \(a,b\), and an object \(r = a_{\vee} \otimes b_{\vee}\). The output is the natural morphism \(\mathrm{LeftCoDualityTensorProductCompatibilityMorphismWithGivenObjects}_{a,b}: (a \otimes b)_{\vee} \rightarrow a_{\vee} \otimes b_{\vee}\).
‣ MorphismFromLeftInternalCoHomToTensorProduct ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{coHom}_\ell}(a,b), b_{\vee} \otimes a )\).
The arguments are two objects \(a,b\). The output is the natural morphism \(\mathrm{MorphismFromLeftInternalCoHomToTensorProduct}_{a,b}: \mathrm{\underline{coHom}_\ell}(a,b) \rightarrow b_{\vee} \otimes a\).
‣ MorphismFromLeftInternalCoHomToTensorProductWithGivenObjects ( s, a, b, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are an object \(s = \mathrm{\underline{coHom}_\ell}(a,b)\), two objects \(a,b\), and an object \(r = b_{\vee} \otimes a\). The output is the natural morphism \(\mathrm{MorphismFromLeftInternalCoHomToTensorProductWithGivenObjects}_{a,b}: \mathrm{\underline{coHom}_\ell}(a,b) \rightarrow a \otimes b_{\vee}\).
‣ IsomorphismFromLeftCoDualObjectToLeftInternalCoHomFromTensorUnit ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(a_{\vee}, \mathrm{\underline{coHom}_\ell}(1,a))\).
The argument is an object \(a\). The output is the isomorphism \(\mathrm{IsomorphismFromLeftCoDualObjectToLeftInternalCoHomFromTensorUnit}_{a}: a_{\vee} \rightarrow \mathrm{\underline{coHom}_\ell}(1,a)\).
‣ IsomorphismFromLeftInternalCoHomFromTensorUnitToLeftCoDualObject ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(\mathrm{\underline{coHom}_\ell}(1,a), a_{\vee})\).
The argument is an object \(a\). The output is the isomorphism \(\mathrm{IsomorphismFromLeftInternalCoHomFromTensorUnitToLeftCoDualObject}_{a}: \mathrm{\underline{coHom}_\ell}(1,a) \rightarrow a_{\vee}\).
‣ UniversalPropertyOfLeftCoDual ( t, a, alpha ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(a_{\vee}, t)\).
The arguments are two objects \(t,a\), and a morphism \(\alpha: 1 \rightarrow t \otimes a\). The output is the morphism \(a_{\vee} \rightarrow t\) given by the universal property of \(a_{\vee}\).
‣ LeftCoclosedMonoidalLambdaIntroduction ( alpha ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{coHom}_\ell}(a,b), 1 )\).
The argument is a morphism \(\alpha: a \rightarrow b\). The output is the corresponding morphism \( \mathrm{\underline{coHom}_\ell}(a,b) \rightarrow 1\) under the cohom tensor adjunction.
‣ LeftCoclosedMonoidalLambdaElimination ( a, b, alpha ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(a,b)\).
The arguments are two objects \(a,b\), and a morphism \(\alpha: \mathrm{\underline{coHom}_\ell}(a,b) \rightarrow 1\). The output is a morphism \(a \rightarrow b\) corresponding to \(\alpha\) under the cohom tensor adjunction.
‣ IsomorphismFromObjectToLeftInternalCoHom ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(a, \mathrm{\underline{coHom}_\ell}(a,1))\).
The argument is an object \(a\). The output is the natural isomorphism \(a \rightarrow \mathrm{\underline{coHom}_\ell}(a,1)\).
‣ IsomorphismFromObjectToLeftInternalCoHomWithGivenLeftInternalCoHom ( a, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(a, r)\).
The argument is an object \(a\), and an object \(r = \mathrm{\underline{coHom}_\ell}(a,1)\). The output is the natural isomorphism \(a \rightarrow \mathrm{\underline{coHom}_\ell}(a,1)\).
‣ IsomorphismFromLeftInternalCoHomToObject ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(\mathrm{\underline{coHom}_\ell}(a,1), a)\).
The argument is an object \(a\). The output is the natural isomorphism \(\mathrm{\underline{coHom}_\ell}(a,1) \rightarrow a\).
‣ IsomorphismFromLeftInternalCoHomToObjectWithGivenLeftInternalCoHom ( a, s ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(s, a)\).
The argument is an object \(a\), and an object \(s = \mathrm{\underline{coHom}_\ell}(a,1)\). The output is the natural isomorphism \(\mathrm{\underline{coHom}_\ell}(a,1) \rightarrow a\).
A monoidal category \(\mathbf{C}\) which has for each functor \(- \otimes b: \mathbf{C} \rightarrow \mathbf{C}\) a left adjoint (denoted by \(\mathrm{\underline{coHom}}(-,b)\)) is called a coclosed monoidal category.
If no operations involving coduals are installed manually, the codual objects will be derived as \(a_\vee \coloneqq \mathrm{\underline{coHom}}(1,a)\).
The corresponding GAP property is called IsCoclosedMonoidalCategory
.
‣ InternalCoHomOnObjects ( a, b ) | ( operation ) |
Returns: an object
The arguments are two objects \(a,b\). The output is the internal cohom object \(\mathrm{\underline{coHom}}(a,b)\).
‣ InternalCoHomOnMorphisms ( alpha, beta ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{coHom}}(a,b'), \mathrm{\underline{coHom}}(a',b) )\)
The arguments are two morphisms \(\alpha: a \rightarrow a', \beta: b \rightarrow b'\). The output is the internal cohom morphism \(\mathrm{\underline{coHom}}(\alpha,\beta): \mathrm{\underline{coHom}}(a,b') \rightarrow \mathrm{\underline{coHom}}(a',b)\).
‣ InternalCoHomOnMorphismsWithGivenInternalCoHoms ( s, alpha, beta, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\)
The arguments are an object \(s = \mathrm{\underline{coHom}}(a,b')\), two morphisms \(\alpha: a \rightarrow a', \beta: b \rightarrow b'\), and an object \(r = \mathrm{\underline{coHom}}(a',b)\). The output is the internal cohom morphism \(\mathrm{\underline{coHom}}(\alpha,\beta): \mathrm{\underline{coHom}}(a,b') \rightarrow \mathrm{\underline{coHom}}(a',b)\).
‣ CoclosedMonoidalRightEvaluationMorphism ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( b, a \otimes \mathrm{\underline{coHom}}(b,a) )\).
The arguments are two objects \(a, b\). The output is the coclosed right evaluation morphism \(\mathrm{coclev}_{a,b}: b \rightarrow a \otimes \mathrm{\underline{coHom}}(b,a)\), i.e., the unit of the cohom tensor adjunction.
‣ CoclosedMonoidalRightEvaluationMorphismWithGivenRange ( a, b, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( b, r )\).
The arguments are two objects \(a,b\) and an object \(r = a \otimes \mathrm{\underline{coHom}}(b,a)\). The output is the coclosed right evaluation morphism \(\mathrm{coclev}_{a,b}: b \rightarrow a \otimes \mathrm{\underline{coHom}}(b,a)\), i.e., the unit of the cohom tensor adjunction.
‣ CoclosedMonoidalRightCoevaluationMorphism ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{coHom}}(a \otimes b, a), b )\).
The arguments are two objects \(a,b\). The output is the coclosed right coevaluation morphism \(\mathrm{coclcoev}_{a,b}: \mathrm{\underline{coHom}}(a \otimes b, a) \rightarrow b\), i.e., the counit of the cohom tensor adjunction.
‣ CoclosedMonoidalRightCoevaluationMorphismWithGivenSource ( a, b, s ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, b )\).
The arguments are two objects \(a,b\) and an object \(s = \mathrm{\underline{coHom}}(a \otimes b, a)\). The output is the coclosed right coevaluation morphism \(\mathrm{coclcoev}_{a,b}: \mathrm{\underline{coHom}}(a \otimes b, a) \rightarrow b\), i.e., the unit of the cohom tensor adjunction.
‣ TensorProductToInternalCoHomRightAdjunctMorphism ( b, c, g ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{coHom}}(a,b), c )\).
The arguments are two objects \(b,c\) and a morphism \(g: a \rightarrow b \otimes c\). The output is a morphism \(f: \mathrm{\underline{coHom}}(a,b) \rightarrow c\) corresponding to \(g\) under the cohom tensor adjunction.
‣ TensorProductToInternalCoHomRightAdjunctMorphismWithGivenInternalCoHom ( b, c, g, i ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( i, c )\).
The arguments are two objects \(b,c\), a morphism \(g: a \rightarrow b \otimes c\) and an object \(i = \mathrm{\underline{coHom}}(a,b)\). The output is a morphism \(f: \mathrm{\underline{coHom}}(a,b) \rightarrow c\) corresponding to \(g\) under the cohom tensor adjunction.
‣ InternalCoHomToTensorProductRightAdjunctMorphism ( a, b, f ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(a, b \otimes c)\).
The arguments are two objects \(a,b\) and a morphism \(f: \mathrm{\underline{coHom}}(a,b) \rightarrow c\). The output is a morphism \(g: a \rightarrow b \otimes c\) corresponding to \(f\) under the cohom tensor adjunction.
‣ InternalCoHomToTensorProductRightAdjunctMorphismWithGivenTensorProduct ( a, b, f, t ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( a, t )\).
The arguments are two objects \(a,b\), a morphism \(f: \mathrm{\underline{coHom}}(a,b) \rightarrow c\) and an object \(t = b \otimes c\). The output is a morphism \(g: a \rightarrow t\) corresponding to \(f\) under the cohom tensor adjunction.
‣ CoclosedMonoidalLeftEvaluationMorphism ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( b, \mathrm{\underline{coHom}}(b,a) \otimes a )\).
The arguments are two objects \(a, b\). The output is the coclosed left evaluation morphism \(\mathrm{coclev}_{a,b}: b \rightarrow \mathrm{\underline{coHom}}(b,a) \otimes a\), i.e., the unit of the cohom tensor adjunction.
‣ CoclosedMonoidalLeftEvaluationMorphismWithGivenRange ( a, b, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( b, r )\).
The arguments are two objects \(a,b\) and an object \(r = \mathrm{\underline{coHom}}(b,a) \otimes a\). The output is the coclosed left evaluation morphism \(\mathrm{coclev}_{a,b}: b \rightarrow \mathrm{\underline{coHom}}(b,a) \otimes a\), i.e., the unit of the cohom tensor adjunction.
‣ CoclosedMonoidalLeftCoevaluationMorphism ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{coHom}}(b \otimes a, a), b )\).
The arguments are two objects \(a,b\). The output is the coclosed left coevaluation morphism \(\mathrm{coclcoev}_{a,b}: \mathrm{\underline{coHom}}(b \otimes a, a) \rightarrow b\), i.e., the counit of the cohom tensor adjunction.
‣ CoclosedMonoidalLeftCoevaluationMorphismWithGivenSource ( a, b, s ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, b )\).
The arguments are two objects \(a,b\) and an object \(s = \mathrm{\underline{coHom}}(b \otimes a, a)\). The output is the coclosed left coevaluation morphism \(\mathrm{coclcoev}_{a,b}: \mathrm{\underline{coHom}}(b \otimes a, a) \rightarrow b\), i.e., the unit of the cohom tensor adjunction.
‣ TensorProductToInternalCoHomLeftAdjunctMorphism ( b, c, g ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{coHom}}(a,c), b )\).
The arguments are two objects \(b,c\) and a morphism \(g: a \rightarrow b \otimes c\). The output is a morphism \(f: \mathrm{\underline{coHom}}(a,c) \rightarrow b\) corresponding to \(g\) under the cohom tensor adjunction.
‣ TensorProductToInternalCoHomLeftAdjunctMorphismWithGivenInternalCoHom ( b, c, g, i ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( i, b )\).
The arguments are two objects \(b,c\), a morphism \(g: a \rightarrow b \otimes c\) and an object \(i = \mathrm{\underline{coHom}}(a,c)\). The output is a morphism \(f: \mathrm{\underline{coHom}}(a,c) \rightarrow b\) corresponding to \(g\) under the cohom tensor adjunction.
‣ InternalCoHomToTensorProductLeftAdjunctMorphism ( a, c, f ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(a, b \otimes c)\).
The arguments are two objects \(a,c\) and a morphism \(f: \mathrm{\underline{coHom}}(a,c) \rightarrow b\). The output is a morphism \(g: a \rightarrow b \otimes c\) corresponding to \(f\) under the cohom tensor adjunction.
‣ InternalCoHomToTensorProductLeftAdjunctMorphismWithGivenTensorProduct ( a, c, f, t ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( a, t )\).
The arguments are two objects \(a,c\), a morphism \(f: \mathrm{\underline{coHom}}(a,c) \rightarrow b\) and an object \(t = b \otimes c\). The output is a morphism \(g: a \rightarrow t\) corresponding to \(f\) under the cohom tensor adjunction.
‣ MonoidalPreCoComposeMorphism ( a, b, c ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{coHom}}(a,c), \mathrm{\underline{coHom}}(b,c) \otimes \mathrm{\underline{coHom}}(a,b) )\).
The arguments are three objects \(a,b,c\). The output is the precocomposition morphism \(\mathrm{MonoidalPreCoComposeMorphism}_{a,b,c}: \mathrm{\underline{coHom}}(a,c) \rightarrow \mathrm{\underline{coHom}}(b,c) \otimes \mathrm{\underline{coHom}}(a,b)\).
‣ MonoidalPreCoComposeMorphismWithGivenObjects ( s, a, b, c, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are an object \(s = \mathrm{\underline{coHom}}(a,c)\), three objects \(a,b,c\), and an object \(r = \mathrm{\underline{coHom}}(a,b) \otimes \mathrm{\underline{coHom}}(b,c)\). The output is the precocomposition morphism \(\mathrm{MonoidalPreCoComposeMorphismWithGivenObjects}_{a,b,c}: \mathrm{\underline{coHom}}(a,c) \rightarrow \mathrm{\underline{coHom}}(b,c) \otimes \mathrm{\underline{coHom}}(a,b)\).
‣ MonoidalPostCoComposeMorphism ( a, b, c ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{coHom}}(a,c), \mathrm{\underline{coHom}}(a,b) \otimes \mathrm{\underline{coHom}}(b,c) )\).
The arguments are three objects \(a,b,c\). The output is the postcocomposition morphism \(\mathrm{MonoidalPostCoComposeMorphism}_{a,b,c}: \mathrm{\underline{coHom}}(a,c) \rightarrow \mathrm{\underline{coHom}}(a,b) \otimes \mathrm{\underline{coHom}}(b,c)\).
‣ MonoidalPostCoComposeMorphismWithGivenObjects ( s, a, b, c, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are an object \(s = \mathrm{\underline{coHom}}(a,c)\), three objects \(a,b,c\), and an object \(r = \mathrm{\underline{coHom}}(b,c) \otimes \mathrm{\underline{coHom}}(a,b)\). The output is the postcocomposition morphism \(\mathrm{MonoidalPostCoComposeMorphismWithGivenObjects}_{a,b,c}: \mathrm{\underline{coHom}}(a,c) \rightarrow \mathrm{\underline{coHom}}(a,b) \otimes \mathrm{\underline{coHom}}(b,c)\).
‣ CoDualOnObjects ( a ) | ( attribute ) |
Returns: an object
The argument is an object \(a\). The output is its codual object \(a_{\vee}\).
‣ CoDualOnMorphisms ( alpha ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}( b_{\vee}, a_{\vee} )\).
The argument is a morphism \(\alpha: a \rightarrow b\). The output is its codual morphism \(\alpha_{\vee}: b_{\vee} \rightarrow a_{\vee}\).
‣ CoDualOnMorphismsWithGivenCoDuals ( s, alpha, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The argument is an object \(s = b_{\vee}\), a morphism \(\alpha: a \rightarrow b\), and an object \(r = a_{\vee}\). The output is the dual morphism \(\alpha_{\vee}: b^{\vee} \rightarrow a^{\vee}\).
‣ CoclosedEvaluationForCoDual ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}( 1, a_{\vee} \otimes a )\).
The argument is an object \(a\). The output is the coclosed evaluation morphism \(\mathrm{coclev}_{a}: 1 \rightarrow a_{\vee} \otimes a\).
‣ CoclosedEvaluationForCoDualWithGivenTensorProduct ( s, a, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are an object \(s = 1\), an object \(a\), and an object \(r = a_{\vee} \otimes a\). The output is the coclosed evaluation morphism \(\mathrm{coclev}_{a}: 1 \rightarrow a_{\vee} \otimes a\).
‣ MorphismFromCoBidual ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}((a_{\vee})_{\vee}, a)\).
The argument is an object \(a\). The output is the morphism from the cobidual \((a_{\vee})_{\vee} \rightarrow a\).
‣ MorphismFromCoBidualWithGivenCoBidual ( a, s ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(s, a)\).
The arguments are an object \(a\), and an object \(s = (a_{\vee})_{\vee}\). The output is the morphism from the cobidual \((a_{\vee})_{\vee} \rightarrow a\).
‣ InternalCoHomTensorProductCompatibilityMorphism ( list ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{coHom}}(a \otimes a', b \otimes b'), \mathrm{\underline{coHom}}(a,b) \otimes \mathrm{\underline{coHom}}(a',b'))\).
The argument is a list of four objects \([ a, a', b, b' ]\). The output is the natural morphism \(\mathrm{InternalCoHomTensorProductCompatibilityMorphism}_{a,a',b,b'}: \mathrm{\underline{coHom}}(a \otimes a', b \otimes b') \rightarrow \mathrm{\underline{coHom}}(a,b) \otimes \mathrm{\underline{coHom}}(a',b')\).
‣ InternalCoHomTensorProductCompatibilityMorphismWithGivenObjects ( s, list, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are a list of four objects \([ a, a', b, b' ]\), and two objects \(s = \mathrm{\underline{coHom}}(a \otimes a', b \otimes b')\) and \(r = \mathrm{\underline{coHom}}(a,b) \otimes \mathrm{\underline{coHom}}(a',b')\). The output is the natural morphism \(\mathrm{InternalCoHomTensorProductCompatibilityMorphismWithGivenObjects}_{a,a',b,b'}: \mathrm{\underline{coHom}}(a \otimes a', b \otimes b') \rightarrow \mathrm{\underline{coHom}}(a,b) \otimes \mathrm{\underline{coHom}}(a',b')\).
‣ CoDualityTensorProductCompatibilityMorphism ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( (a \otimes b)_{\vee}, a_{\vee} \otimes b_{\vee} )\).
The arguments are two objects \(a,b\). The output is the natural morphism \(\mathrm{CoDualityTensorProductCompatibilityMorphism}: (a \otimes b)_{\vee} \rightarrow a_{\vee} \otimes b_{\vee}\).
‣ CoDualityTensorProductCompatibilityMorphismWithGivenObjects ( s, a, b, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are an object \(s = (a \otimes b)_{\vee}\), two objects \(a,b\), and an object \(r = a_{\vee} \otimes b_{\vee}\). The output is the natural morphism \(\mathrm{CoDualityTensorProductCompatibilityMorphismWithGivenObjects}_{a,b}: (a \otimes b)_{\vee} \rightarrow a_{\vee} \otimes b_{\vee}\).
‣ MorphismFromInternalCoHomToTensorProduct ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{coHom}}(a,b), b_{\vee} \otimes a )\).
The arguments are two objects \(a,b\). The output is the natural morphism \(\mathrm{MorphismFromInternalCoHomToTensorProduct}_{a,b}: \mathrm{\underline{coHom}}(a,b) \rightarrow b_{\vee} \otimes a\).
‣ MorphismFromInternalCoHomToTensorProductWithGivenObjects ( s, a, b, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( s, r )\).
The arguments are an object \(s = \mathrm{\underline{coHom}}(a,b)\), two objects \(a,b\), and an object \(r = b_{\vee} \otimes a\). The output is the natural morphism \(\mathrm{MorphismFromInternalCoHomToTensorProductWithGivenObjects}_{a,b}: \mathrm{\underline{coHom}}(a,b) \rightarrow a \otimes b_{\vee}\).
‣ IsomorphismFromCoDualObjectToInternalCoHomFromTensorUnit ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(a_{\vee}, \mathrm{\underline{coHom}}(1,a))\).
The argument is an object \(a\). The output is the isomorphism \(\mathrm{IsomorphismFromCoDualObjectToInternalCoHomFromTensorUnit}_{a}: a_{\vee} \rightarrow \mathrm{\underline{coHom}}(1,a)\).
‣ IsomorphismFromInternalCoHomFromTensorUnitToCoDualObject ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(\mathrm{\underline{coHom}}(1,a), a_{\vee})\).
The argument is an object \(a\). The output is the isomorphism \(\mathrm{IsomorphismFromInternalCoHomFromTensorUnitToCoDualObject}_{a}: \mathrm{\underline{coHom}}(1,a) \rightarrow a_{\vee}\).
‣ UniversalPropertyOfCoDual ( t, a, alpha ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(a_{\vee}, t)\).
The arguments are two objects \(t,a\), and a morphism \(\alpha: 1 \rightarrow t \otimes a\). The output is the morphism \(a_{\vee} \rightarrow t\) given by the universal property of \(a_{\vee}\).
‣ CoLambdaIntroduction ( alpha ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{coHom}}(a,b), 1 )\).
The argument is a morphism \(\alpha: a \rightarrow b\). The output is the corresponding morphism \( \mathrm{\underline{coHom}}(a,b) \rightarrow 1\) under the cohom tensor adjunction.
‣ CoLambdaElimination ( a, b, alpha ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(a,b)\).
The arguments are two objects \(a,b\), and a morphism \(\alpha: \mathrm{\underline{coHom}}(a,b) \rightarrow 1\). The output is a morphism \(a \rightarrow b\) corresponding to \(\alpha\) under the cohom tensor adjunction.
‣ IsomorphismFromObjectToInternalCoHom ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(a, \mathrm{\underline{coHom}}(a,1))\).
The argument is an object \(a\). The output is the natural isomorphism \(a \rightarrow \mathrm{\underline{coHom}}(a,1)\).
‣ IsomorphismFromObjectToInternalCoHomWithGivenInternalCoHom ( a, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(a, r)\).
The argument is an object \(a\), and an object \(r = \mathrm{\underline{coHom}}(a,1)\). The output is the natural isomorphism \(a \rightarrow \mathrm{\underline{coHom}}(a,1)\).
‣ IsomorphismFromInternalCoHomToObject ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(\mathrm{\underline{coHom}}(a,1), a)\).
The argument is an object \(a\). The output is the natural isomorphism \(\mathrm{\underline{coHom}}(a,1) \rightarrow a\).
‣ IsomorphismFromInternalCoHomToObjectWithGivenInternalCoHom ( a, s ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(s, a)\).
The argument is an object \(a\), and an object \(s = \mathrm{\underline{coHom}}(a,1)\). The output is the natural isomorphism \(\mathrm{\underline{coHom}}(a,1) \rightarrow a\).
A monoidal category \(\mathbf{C}\) which is symmetric and closed is called a symmetric closed monoidal category.
The corresponding GAP property is given by IsSymmetricClosedMonoidalCategory
.
A monoidal category \(\mathbf{C}\) which is symmetric and coclosed is called a symmetric coclosed monoidal category.
The corresponding GAP property is given by IsSymmetricCoclosedMonoidalCategory
.
A symmetric closed monoidal category \(\mathbf{C}\) satisfying
the natural morphism
\(\mathrm{\underline{Hom}_\ell}(a, a') \otimes \mathrm{\underline{Hom}_\ell}(b, b') \rightarrow \mathrm{\underline{Hom}_\ell}(a \otimes b, a' \otimes b')\) is an isomorphism,
the natural morphism
\(a \rightarrow \mathrm{\underline{Hom}_\ell}(\mathrm{\underline{Hom}_\ell}(a, 1), 1)\) is an isomorphism is called a rigid symmetric closed monoidal category.
If no operations involving the closed structure are installed manually, the internal hom objects will be derived as \(\mathrm{\underline{Hom}_\ell}(a,b) \coloneqq a^\vee \otimes b\) and, in particular, \(\mathrm{\underline{Hom}_\ell}(a,1) \coloneqq a^\vee \otimes 1\).
The corresponding GAP property is given by IsRigidSymmetricClosedMonoidalCategory
.
‣ IsomorphismFromTensorProductWithDualObjectToInternalHom ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( a^{\vee} \otimes b, \mathrm{\underline{Hom}}(a,b) )\).
The arguments are two objects \(a,b\). The output is the natural morphism \(\mathrm{IsomorphismFromTensorProductWithDualObjectToInternalHom}_{a,b}: a^{\vee} \otimes b \rightarrow \mathrm{\underline{Hom}}(a,b)\).
‣ IsomorphismFromInternalHomToTensorProductWithDualObject ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{Hom}}(a,b), a^{\vee} \otimes b )\).
The arguments are two objects \(a,b\). The output is the inverse of \(\mathrm{IsomorphismFromTensorProductWithDualObjectToInternalHom}\), namely \(\mathrm{IsomorphismFromInternalHomToTensorProductWithDualObject}_{a,b}: \mathrm{\underline{Hom}}(a,b) \rightarrow a^{\vee} \otimes b\).
‣ MorphismFromInternalHomToTensorProduct ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{Hom}}(a,b), a^{\vee} \otimes b )\).
The arguments are two objects \(a,b\). The output is the inverse of \(\mathrm{MorphismFromTensorProductToInternalHomWithGivenObjects}\), namely \(\mathrm{MorphismFromInternalHomToTensorProductWithGivenObjects}_{a,b}: \mathrm{\underline{Hom}}(a,b) \rightarrow a^{\vee} \otimes b\).
‣ MorphismFromInternalHomToTensorProductWithGivenObjects ( s, a, b, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{Hom}}(a,b), a^{\vee} \otimes b )\).
The arguments are an object \(s = \mathrm{\underline{Hom}}(a,b)\), two objects \(a,b\), and an object \(r = a^{\vee} \otimes b\). The output is the inverse of \(\mathrm{MorphismFromTensorProductToInternalHomWithGivenObjects}\), namely \(\mathrm{MorphismFromInternalHomToTensorProductWithGivenObjects}_{a,b}: \mathrm{\underline{Hom}}(a,b) \rightarrow a^{\vee} \otimes b\).
‣ TensorProductInternalHomCompatibilityMorphismInverse ( list ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{Hom}}(a \otimes b,a' \otimes b'), \mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b') )\).
The argument is a list of four objects \([ a, a', b, b' ]\). The output is the natural morphism \(\mathrm{TensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects}_{a,a',b,b'}: \mathrm{\underline{Hom}}(a \otimes b,a' \otimes b') \rightarrow \mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b')\).
‣ TensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects ( s, list, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{Hom}}(a \otimes b,a' \otimes b'), \mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b') )\).
The arguments are a list of four objects \([ a, a', b, b' ]\), and two objects \(s = \mathrm{\underline{Hom}}(a \otimes b,a' \otimes b')\) and \(r = \mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b')\). The output is the natural morphism \(\mathrm{TensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects}_{a,a',b,b'}: \mathrm{\underline{Hom}}(a \otimes b,a' \otimes b') \rightarrow \mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b')\).
‣ CoevaluationForDual ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(1,a \otimes a^{\vee})\).
The argument is an object \(a\). The output is the coevaluation morphism \(\mathrm{coev}_{a}:1 \rightarrow a \otimes a^{\vee}\).
‣ CoevaluationForDualWithGivenTensorProduct ( s, a, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(1,a \otimes a^{\vee})\).
The arguments are an object \(s = 1\), an object \(a\), and an object \(r = a \otimes a^{\vee}\). The output is the coevaluation morphism \(\mathrm{coev}_{a}:1 \rightarrow a \otimes a^{\vee}\).
‣ TraceMap ( alpha ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(1,1)\).
The argument is an endomorphism \(\alpha: a \rightarrow a\). The output is the trace morphism \(\mathrm{trace}_{\alpha}: 1 \rightarrow 1\).
‣ RankMorphism ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(1,1)\).
The argument is an object \(a\). The output is the rank morphism \(\mathrm{rank}_a: 1 \rightarrow 1\).
‣ MorphismFromBidual ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}((a^{\vee})^{\vee},a)\).
The argument is an object \(a\). The output is the inverse of the morphism to the bidual \((a^{\vee})^{\vee} \rightarrow a\).
‣ MorphismFromBidualWithGivenBidual ( a, s ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}((a^{\vee})^{\vee},a)\).
The argument is an object \(a\), and an object \(s = (a^{\vee})^{\vee}\). The output is the inverse of the morphism to the bidual \((a^{\vee})^{\vee} \rightarrow a\).
A symmetric coclosed monoidal category \(\mathbf{C}\) satisfying
the natural morphism
\(\mathrm{\underline{coHom}}(a \otimes a', b \otimes b') \rightarrow \mathrm{\underline{coHom}}(a, b) \otimes \mathrm{\underline{coHom}}(a', b')\) is an isomorphism,
the natural morphism
\(\mathrm{\underline{coHom}}(1, \mathrm{\underline{coHom}}(1, a)) \rightarrow a\) is an isomorphism is called a rigid symmetric coclosed monoidal category.
If no operations involving the coclosed structure are installed manually, the internal cohom objects will be derived as \(\mathrm{\underline{coHom}}(a,b) \coloneqq a \otimes b_\vee\) and, in particular, \(\mathrm{\underline{coHom}}(1,a) \coloneqq 1 \otimes a_\vee\).
The corresponding GAP property is given by IsRigidSymmetricCoclosedMonoidalCategory
.
‣ IsomorphismFromInternalCoHomToTensorProductWithCoDualObject ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{coHom}}(a,b), b_{\vee} \otimes a )\).
The arguments are two objects \(a,b\). The output is the natural morphism \(\mathrm{IsomorphismFromInternalCoHomToTensorProductWithCoDualObjectWithGivenObjects}_{a,b}: \mathrm{\underline{coHom}}(a,b) \rightarrow b_{\vee} \otimes a\).
‣ IsomorphismFromTensorProductWithCoDualObjectToInternalCoHom ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( a_{\vee} \otimes b, \mathrm{\underline{coHom}}(b,a)\).
The arguments are two objects \(a,b\). The output is the inverse of \(\mathrm{IsomorphismFromInternalCoHomToTensorProductWithCoDualObject}\), namely \(\mathrm{IsomorphismFromTensorProductWithCoDualObjectToInternalCoHom}_{a,b}: a_{\vee} \otimes b \rightarrow \mathrm{\underline{coHom}}(b,a)\).
‣ MorphismFromTensorProductToInternalCoHom ( a, b ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( a_{\vee} \otimes b, \mathrm{\underline{coHom}}(b,a) )\).
The arguments are two objects \(a,b\). The output is the inverse of \(\mathrm{MorphismFromInternalCoHomToTensorProductWithGivenObjects}\), namely \(\mathrm{MorphismFromTensorProductToInternalCoHomWithGivenObjects}_{a,b}: a_{\vee} \otimes b \rightarrow \mathrm{\underline{coHom}}(b,a)\).
‣ MorphismFromTensorProductToInternalCoHomWithGivenObjects ( s, a, b, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( a_{\vee} \otimes b, \mathrm{\underline{coHom}}(b,a)\).
The arguments are an object \(s_{\vee} = a \otimes b\), two objects \(a,b\), and an object \(r = \mathrm{\underline{coHom}}(b,a)\). The output is the inverse of \(\mathrm{MorphismFromInternalCoHomToTensorProductWithGivenObjects}\), namely \(\mathrm{MorphismFromTensorProductToInternalCoHomWithGivenObjects}_{a,b}: a_{\vee} \otimes b \rightarrow \mathrm{\underline{coHom}}(b,a)\).
‣ InternalCoHomTensorProductCompatibilityMorphismInverse ( list ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{coHom}}(a,b) \otimes \mathrm{\underline{coHom}}(a',b'), \mathrm{\underline{coHom}}(a \otimes a', b \otimes b' )\).
The argument is a list of four objects \([ a, a', b, b' ]\). The output is the natural morphism \(\mathrm{InternalCoHomTensorProductCompatibilityMorphismInverseWithGivenObjects}_{a,a',b,b'}: \mathrm{\underline{coHom}}(a,b) \otimes \mathrm{\underline{coHom}}(a',b') \rightarrow \mathrm{\underline{coHom}}(a \otimes a', b \otimes b')\).
‣ InternalCoHomTensorProductCompatibilityMorphismInverseWithGivenObjects ( s, list, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \mathrm{\underline{coHom}}(a,b) \otimes \mathrm{\underline{coHom}}(a',b'), \mathrm{\underline{coHom}}(a \otimes a', b \otimes b' )\).
The arguments are a list of four objects \([ a, a', b, b' ]\), and two objects \(s = \mathrm{\underline{coHom}}(a,b) \otimes \mathrm{\underline{coHom}}(a',b')\) and \(r = \mathrm{\underline{coHom}}(a \otimes a', b \otimes b')\). The output is the natural morphism \(\mathrm{InternalCoHomTensorProductCompatibilityMorphismInverseWithGivenObjects}_{a,a',b,b'}: \mathrm{\underline{coHom}}(a,b) \otimes \mathrm{\underline{coHom}}(a',b') \rightarrow \mathrm{\underline{coHom}}(a \otimes a', b \otimes b')\).
‣ CoclosedCoevaluationForCoDual ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(a \otimes a_{\vee}, 1)\).
The argument is an object \(a\). The output is the coclosed coevaluation morphism \(\mathrm{coclcoev}_{a}: a \otimes a_{\vee} \rightarrow 1\).
‣ CoclosedCoevaluationForCoDualWithGivenTensorProduct ( s, a, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(a \otimes a_{\vee}, 1)\).
The arguments are an object \(s = a \otimes a_{\vee}\), an object \(a\), and an object \(r = 1\). The output is the coclosed coevaluation morphism \(\mathrm{coclcoev}_{a}: a \otimes a_{\vee} \rightarrow 1\).
‣ CoTraceMap ( alpha ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(1,1)\).
The argument is an endomorphism \(\alpha: a \rightarrow a\). The output is the cotrace morphism \(\mathrm{cotrace}_{\alpha}: 1 \rightarrow 1\).
‣ CoRankMorphism ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(1,1)\).
The argument is an object \(a\). The output is the corank morphism \(\mathrm{corank}_a: 1 \rightarrow 1\).
‣ MorphismToCoBidual ( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(a, (a_{\vee})_{\vee})\).
The argument is an object \(a\). The output is the inverse of the morphism from the cobidual \(a \rightarrow (a_{\vee})_{\vee}\).
‣ MorphismToCoBidualWithGivenCoBidual ( a, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(a,(a_{\vee})_{\vee})\).
The argument is an object \(a\), and an object \(r = (a_{\vee})_{\vee}\). The output is the inverse of the morphism from the cobidual \(a \rightarrow (a_{\vee})_{\vee}\).
‣ InternalHom ( a, b ) | ( operation ) |
Returns: a cell
This is a convenience method. The arguments are two cells \(a,b\). The output is the internal hom cell. If \(a,b\) are two CAP objects the output is the internal Hom object \(\mathrm{\underline{Hom}}(a,b)\). If at least one of the arguments is a CAP morphism the output is a CAP morphism, namely the internal hom on morphisms, where any object is replaced by its identity morphism.
‣ InternalCoHom ( a, b ) | ( operation ) |
Returns: a cell
This is a convenience method. The arguments are two cells \(a,b\). The output is the internal cohom cell. If \(a,b\) are two CAP objects the output is the internal cohom object \(\mathrm{\underline{coHom}}(a,b)\). If at least one of the arguments is a CAP morphism the output is a CAP morphism, namely the internal cohom on morphisms, where any object is replaced by its identity morphism.
‣ LeftInternalHom ( a, b ) | ( operation ) |
Returns: a cell
This is a convenience method. The arguments are two cells \(a,b\). The output is the internal hom cell. If \(a,b\) are two CAP objects the output is the internal Hom object \(\mathrm{\underline{Hom}_\ell}(a,b)\). If at least one of the arguments is a CAP morphism the output is a CAP morphism, namely the internal hom on morphisms, where any object is replaced by its identity morphism.
‣ LeftInternalCoHom ( a, b ) | ( operation ) |
Returns: a cell
This is a convenience method. The arguments are two cells \(a,b\). The output is the internal cohom cell. If \(a,b\) are two CAP objects the output is the internal cohom object \(\mathrm{\underline{coHom}_\ell}(a,b)\). If at least one of the arguments is a CAP morphism the output is a CAP morphism, namely the internal cohom on morphisms, where any object is replaced by its identity morphism.
‣ AddLeftDistributivityExpanding ( C, F ) | ( operation ) |
‣ AddLeftDistributivityExpanding ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftDistributivityExpanding
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, L ) \mapsto \mathtt{LeftDistributivityExpanding}(a, L)\).
‣ AddLeftDistributivityExpandingWithGivenObjects ( C, F ) | ( operation ) |
‣ AddLeftDistributivityExpandingWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftDistributivityExpandingWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, L, r ) \mapsto \mathtt{LeftDistributivityExpandingWithGivenObjects}(s, a, L, r)\).
‣ AddLeftDistributivityFactoring ( C, F ) | ( operation ) |
‣ AddLeftDistributivityFactoring ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftDistributivityFactoring
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, L ) \mapsto \mathtt{LeftDistributivityFactoring}(a, L)\).
‣ AddLeftDistributivityFactoringWithGivenObjects ( C, F ) | ( operation ) |
‣ AddLeftDistributivityFactoringWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftDistributivityFactoringWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, L, r ) \mapsto \mathtt{LeftDistributivityFactoringWithGivenObjects}(s, a, L, r)\).
‣ AddRightDistributivityExpanding ( C, F ) | ( operation ) |
‣ AddRightDistributivityExpanding ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation RightDistributivityExpanding
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( L, a ) \mapsto \mathtt{RightDistributivityExpanding}(L, a)\).
‣ AddRightDistributivityExpandingWithGivenObjects ( C, F ) | ( operation ) |
‣ AddRightDistributivityExpandingWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation RightDistributivityExpandingWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, L, a, r ) \mapsto \mathtt{RightDistributivityExpandingWithGivenObjects}(s, L, a, r)\).
‣ AddRightDistributivityFactoring ( C, F ) | ( operation ) |
‣ AddRightDistributivityFactoring ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation RightDistributivityFactoring
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( L, a ) \mapsto \mathtt{RightDistributivityFactoring}(L, a)\).
‣ AddRightDistributivityFactoringWithGivenObjects ( C, F ) | ( operation ) |
‣ AddRightDistributivityFactoringWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation RightDistributivityFactoringWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, L, a, r ) \mapsto \mathtt{RightDistributivityFactoringWithGivenObjects}(s, L, a, r)\).
‣ AddBraiding ( C, F ) | ( operation ) |
‣ AddBraiding ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation Braiding
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{Braiding}(a, b)\).
‣ AddBraidingInverse ( C, F ) | ( operation ) |
‣ AddBraidingInverse ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation BraidingInverse
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{BraidingInverse}(a, b)\).
‣ AddBraidingInverseWithGivenTensorProducts ( C, F ) | ( operation ) |
‣ AddBraidingInverseWithGivenTensorProducts ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation BraidingInverseWithGivenTensorProducts
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, b, r ) \mapsto \mathtt{BraidingInverseWithGivenTensorProducts}(s, a, b, r)\).
‣ AddBraidingWithGivenTensorProducts ( C, F ) | ( operation ) |
‣ AddBraidingWithGivenTensorProducts ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation BraidingWithGivenTensorProducts
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, b, r ) \mapsto \mathtt{BraidingWithGivenTensorProducts}(s, a, b, r)\).
‣ AddClosedMonoidalLeftCoevaluationMorphism ( C, F ) | ( operation ) |
‣ AddClosedMonoidalLeftCoevaluationMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation ClosedMonoidalLeftCoevaluationMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{ClosedMonoidalLeftCoevaluationMorphism}(a, b)\).
‣ AddClosedMonoidalLeftCoevaluationMorphismWithGivenRange ( C, F ) | ( operation ) |
‣ AddClosedMonoidalLeftCoevaluationMorphismWithGivenRange ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation ClosedMonoidalLeftCoevaluationMorphismWithGivenRange
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, r ) \mapsto \mathtt{ClosedMonoidalLeftCoevaluationMorphismWithGivenRange}(a, b, r)\).
‣ AddClosedMonoidalLeftEvaluationMorphism ( C, F ) | ( operation ) |
‣ AddClosedMonoidalLeftEvaluationMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation ClosedMonoidalLeftEvaluationMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{ClosedMonoidalLeftEvaluationMorphism}(a, b)\).
‣ AddClosedMonoidalLeftEvaluationMorphismWithGivenSource ( C, F ) | ( operation ) |
‣ AddClosedMonoidalLeftEvaluationMorphismWithGivenSource ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation ClosedMonoidalLeftEvaluationMorphismWithGivenSource
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, s ) \mapsto \mathtt{ClosedMonoidalLeftEvaluationMorphismWithGivenSource}(a, b, s)\).
‣ AddClosedMonoidalRightCoevaluationMorphism ( C, F ) | ( operation ) |
‣ AddClosedMonoidalRightCoevaluationMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation ClosedMonoidalRightCoevaluationMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{ClosedMonoidalRightCoevaluationMorphism}(a, b)\).
‣ AddClosedMonoidalRightCoevaluationMorphismWithGivenRange ( C, F ) | ( operation ) |
‣ AddClosedMonoidalRightCoevaluationMorphismWithGivenRange ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation ClosedMonoidalRightCoevaluationMorphismWithGivenRange
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, r ) \mapsto \mathtt{ClosedMonoidalRightCoevaluationMorphismWithGivenRange}(a, b, r)\).
‣ AddClosedMonoidalRightEvaluationMorphism ( C, F ) | ( operation ) |
‣ AddClosedMonoidalRightEvaluationMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation ClosedMonoidalRightEvaluationMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{ClosedMonoidalRightEvaluationMorphism}(a, b)\).
‣ AddClosedMonoidalRightEvaluationMorphismWithGivenSource ( C, F ) | ( operation ) |
‣ AddClosedMonoidalRightEvaluationMorphismWithGivenSource ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation ClosedMonoidalRightEvaluationMorphismWithGivenSource
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, s ) \mapsto \mathtt{ClosedMonoidalRightEvaluationMorphismWithGivenSource}(a, b, s)\).
‣ AddDualOnMorphisms ( C, F ) | ( operation ) |
‣ AddDualOnMorphisms ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation DualOnMorphisms
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( alpha ) \mapsto \mathtt{DualOnMorphisms}(alpha)\).
‣ AddDualOnMorphismsWithGivenDuals ( C, F ) | ( operation ) |
‣ AddDualOnMorphismsWithGivenDuals ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation DualOnMorphismsWithGivenDuals
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, alpha, r ) \mapsto \mathtt{DualOnMorphismsWithGivenDuals}(s, alpha, r)\).
‣ AddDualOnObjects ( C, F ) | ( operation ) |
‣ AddDualOnObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation DualOnObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{DualOnObjects}(a)\).
‣ AddEvaluationForDual ( C, F ) | ( operation ) |
‣ AddEvaluationForDual ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation EvaluationForDual
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{EvaluationForDual}(a)\).
‣ AddEvaluationForDualWithGivenTensorProduct ( C, F ) | ( operation ) |
‣ AddEvaluationForDualWithGivenTensorProduct ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation EvaluationForDualWithGivenTensorProduct
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, r ) \mapsto \mathtt{EvaluationForDualWithGivenTensorProduct}(s, a, r)\).
‣ AddInternalHomOnMorphisms ( C, F ) | ( operation ) |
‣ AddInternalHomOnMorphisms ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation InternalHomOnMorphisms
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( alpha, beta ) \mapsto \mathtt{InternalHomOnMorphisms}(alpha, beta)\).
‣ AddInternalHomOnMorphismsWithGivenInternalHoms ( C, F ) | ( operation ) |
‣ AddInternalHomOnMorphismsWithGivenInternalHoms ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation InternalHomOnMorphismsWithGivenInternalHoms
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, alpha, beta, r ) \mapsto \mathtt{InternalHomOnMorphismsWithGivenInternalHoms}(s, alpha, beta, r)\).
‣ AddInternalHomOnObjects ( C, F ) | ( operation ) |
‣ AddInternalHomOnObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation InternalHomOnObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{InternalHomOnObjects}(a, b)\).
‣ AddInternalHomToTensorProductLeftAdjunctMorphism ( C, F ) | ( operation ) |
‣ AddInternalHomToTensorProductLeftAdjunctMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation InternalHomToTensorProductLeftAdjunctMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( b, c, g ) \mapsto \mathtt{InternalHomToTensorProductLeftAdjunctMorphism}(b, c, g)\).
‣ AddInternalHomToTensorProductLeftAdjunctMorphismWithGivenTensorProduct ( C, F ) | ( operation ) |
‣ AddInternalHomToTensorProductLeftAdjunctMorphismWithGivenTensorProduct ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation InternalHomToTensorProductLeftAdjunctMorphismWithGivenTensorProduct
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( b, c, g, s ) \mapsto \mathtt{InternalHomToTensorProductLeftAdjunctMorphismWithGivenTensorProduct}(b, c, g, s)\).
‣ AddInternalHomToTensorProductLeftAdjunctionIsomorphism ( C, F ) | ( operation ) |
‣ AddInternalHomToTensorProductLeftAdjunctionIsomorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation InternalHomToTensorProductLeftAdjunctionIsomorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, c ) \mapsto \mathtt{InternalHomToTensorProductLeftAdjunctionIsomorphism}(a, b, c)\).
‣ AddInternalHomToTensorProductLeftAdjunctionIsomorphismWithGivenObjects ( C, F ) | ( operation ) |
‣ AddInternalHomToTensorProductLeftAdjunctionIsomorphismWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation InternalHomToTensorProductLeftAdjunctionIsomorphismWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, b, c, r ) \mapsto \mathtt{InternalHomToTensorProductLeftAdjunctionIsomorphismWithGivenObjects}(s, a, b, c, r)\).
‣ AddInternalHomToTensorProductRightAdjunctMorphism ( C, F ) | ( operation ) |
‣ AddInternalHomToTensorProductRightAdjunctMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation InternalHomToTensorProductRightAdjunctMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, c, g ) \mapsto \mathtt{InternalHomToTensorProductRightAdjunctMorphism}(a, c, g)\).
‣ AddInternalHomToTensorProductRightAdjunctMorphismWithGivenTensorProduct ( C, F ) | ( operation ) |
‣ AddInternalHomToTensorProductRightAdjunctMorphismWithGivenTensorProduct ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation InternalHomToTensorProductRightAdjunctMorphismWithGivenTensorProduct
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, c, g, s ) \mapsto \mathtt{InternalHomToTensorProductRightAdjunctMorphismWithGivenTensorProduct}(a, c, g, s)\).
‣ AddInternalHomToTensorProductRightAdjunctionIsomorphism ( C, F ) | ( operation ) |
‣ AddInternalHomToTensorProductRightAdjunctionIsomorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation InternalHomToTensorProductRightAdjunctionIsomorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, c ) \mapsto \mathtt{InternalHomToTensorProductRightAdjunctionIsomorphism}(a, b, c)\).
‣ AddInternalHomToTensorProductRightAdjunctionIsomorphismWithGivenObjects ( C, F ) | ( operation ) |
‣ AddInternalHomToTensorProductRightAdjunctionIsomorphismWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation InternalHomToTensorProductRightAdjunctionIsomorphismWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, b, c, r ) \mapsto \mathtt{InternalHomToTensorProductRightAdjunctionIsomorphismWithGivenObjects}(s, a, b, c, r)\).
‣ AddIsomorphismFromDualObjectToInternalHomIntoTensorUnit ( C, F ) | ( operation ) |
‣ AddIsomorphismFromDualObjectToInternalHomIntoTensorUnit ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromDualObjectToInternalHomIntoTensorUnit
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{IsomorphismFromDualObjectToInternalHomIntoTensorUnit}(a)\).
‣ AddIsomorphismFromInternalHomIntoTensorUnitToDualObject ( C, F ) | ( operation ) |
‣ AddIsomorphismFromInternalHomIntoTensorUnitToDualObject ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromInternalHomIntoTensorUnitToDualObject
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{IsomorphismFromInternalHomIntoTensorUnitToDualObject}(a)\).
‣ AddIsomorphismFromInternalHomToObject ( C, F ) | ( operation ) |
‣ AddIsomorphismFromInternalHomToObject ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromInternalHomToObject
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{IsomorphismFromInternalHomToObject}(a)\).
‣ AddIsomorphismFromInternalHomToObjectWithGivenInternalHom ( C, F ) | ( operation ) |
‣ AddIsomorphismFromInternalHomToObjectWithGivenInternalHom ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromInternalHomToObjectWithGivenInternalHom
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, s ) \mapsto \mathtt{IsomorphismFromInternalHomToObjectWithGivenInternalHom}(a, s)\).
‣ AddIsomorphismFromObjectToInternalHom ( C, F ) | ( operation ) |
‣ AddIsomorphismFromObjectToInternalHom ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromObjectToInternalHom
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{IsomorphismFromObjectToInternalHom}(a)\).
‣ AddIsomorphismFromObjectToInternalHomWithGivenInternalHom ( C, F ) | ( operation ) |
‣ AddIsomorphismFromObjectToInternalHomWithGivenInternalHom ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromObjectToInternalHomWithGivenInternalHom
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, r ) \mapsto \mathtt{IsomorphismFromObjectToInternalHomWithGivenInternalHom}(a, r)\).
‣ AddLambdaElimination ( C, F ) | ( operation ) |
‣ AddLambdaElimination ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LambdaElimination
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, alpha ) \mapsto \mathtt{LambdaElimination}(a, b, alpha)\).
‣ AddLambdaIntroduction ( C, F ) | ( operation ) |
‣ AddLambdaIntroduction ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LambdaIntroduction
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( alpha ) \mapsto \mathtt{LambdaIntroduction}(alpha)\).
‣ AddMonoidalPostComposeMorphism ( C, F ) | ( operation ) |
‣ AddMonoidalPostComposeMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MonoidalPostComposeMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, c ) \mapsto \mathtt{MonoidalPostComposeMorphism}(a, b, c)\).
‣ AddMonoidalPostComposeMorphismWithGivenObjects ( C, F ) | ( operation ) |
‣ AddMonoidalPostComposeMorphismWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MonoidalPostComposeMorphismWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, b, c, r ) \mapsto \mathtt{MonoidalPostComposeMorphismWithGivenObjects}(s, a, b, c, r)\).
‣ AddMonoidalPreComposeMorphism ( C, F ) | ( operation ) |
‣ AddMonoidalPreComposeMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MonoidalPreComposeMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, c ) \mapsto \mathtt{MonoidalPreComposeMorphism}(a, b, c)\).
‣ AddMonoidalPreComposeMorphismWithGivenObjects ( C, F ) | ( operation ) |
‣ AddMonoidalPreComposeMorphismWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MonoidalPreComposeMorphismWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, b, c, r ) \mapsto \mathtt{MonoidalPreComposeMorphismWithGivenObjects}(s, a, b, c, r)\).
‣ AddMorphismFromTensorProductToInternalHom ( C, F ) | ( operation ) |
‣ AddMorphismFromTensorProductToInternalHom ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismFromTensorProductToInternalHom
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{MorphismFromTensorProductToInternalHom}(a, b)\).
‣ AddMorphismFromTensorProductToInternalHomWithGivenObjects ( C, F ) | ( operation ) |
‣ AddMorphismFromTensorProductToInternalHomWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismFromTensorProductToInternalHomWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, b, r ) \mapsto \mathtt{MorphismFromTensorProductToInternalHomWithGivenObjects}(s, a, b, r)\).
‣ AddMorphismToBidual ( C, F ) | ( operation ) |
‣ AddMorphismToBidual ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismToBidual
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{MorphismToBidual}(a)\).
‣ AddMorphismToBidualWithGivenBidual ( C, F ) | ( operation ) |
‣ AddMorphismToBidualWithGivenBidual ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismToBidualWithGivenBidual
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, r ) \mapsto \mathtt{MorphismToBidualWithGivenBidual}(a, r)\).
‣ AddTensorProductDualityCompatibilityMorphism ( C, F ) | ( operation ) |
‣ AddTensorProductDualityCompatibilityMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductDualityCompatibilityMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{TensorProductDualityCompatibilityMorphism}(a, b)\).
‣ AddTensorProductDualityCompatibilityMorphismWithGivenObjects ( C, F ) | ( operation ) |
‣ AddTensorProductDualityCompatibilityMorphismWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductDualityCompatibilityMorphismWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, b, r ) \mapsto \mathtt{TensorProductDualityCompatibilityMorphismWithGivenObjects}(s, a, b, r)\).
‣ AddTensorProductInternalHomCompatibilityMorphism ( C, F ) | ( operation ) |
‣ AddTensorProductInternalHomCompatibilityMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductInternalHomCompatibilityMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( list ) \mapsto \mathtt{TensorProductInternalHomCompatibilityMorphism}(list)\).
‣ AddTensorProductInternalHomCompatibilityMorphismWithGivenObjects ( C, F ) | ( operation ) |
‣ AddTensorProductInternalHomCompatibilityMorphismWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductInternalHomCompatibilityMorphismWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( source, list, range ) \mapsto \mathtt{TensorProductInternalHomCompatibilityMorphismWithGivenObjects}(source, list, range)\).
‣ AddTensorProductToInternalHomLeftAdjunctMorphism ( C, F ) | ( operation ) |
‣ AddTensorProductToInternalHomLeftAdjunctMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductToInternalHomLeftAdjunctMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, f ) \mapsto \mathtt{TensorProductToInternalHomLeftAdjunctMorphism}(a, b, f)\).
‣ AddTensorProductToInternalHomLeftAdjunctMorphismWithGivenInternalHom ( C, F ) | ( operation ) |
‣ AddTensorProductToInternalHomLeftAdjunctMorphismWithGivenInternalHom ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductToInternalHomLeftAdjunctMorphismWithGivenInternalHom
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, f, i ) \mapsto \mathtt{TensorProductToInternalHomLeftAdjunctMorphismWithGivenInternalHom}(a, b, f, i)\).
‣ AddTensorProductToInternalHomLeftAdjunctionIsomorphism ( C, F ) | ( operation ) |
‣ AddTensorProductToInternalHomLeftAdjunctionIsomorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductToInternalHomLeftAdjunctionIsomorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, c ) \mapsto \mathtt{TensorProductToInternalHomLeftAdjunctionIsomorphism}(a, b, c)\).
‣ AddTensorProductToInternalHomLeftAdjunctionIsomorphismWithGivenObjects ( C, F ) | ( operation ) |
‣ AddTensorProductToInternalHomLeftAdjunctionIsomorphismWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductToInternalHomLeftAdjunctionIsomorphismWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, b, c, r ) \mapsto \mathtt{TensorProductToInternalHomLeftAdjunctionIsomorphismWithGivenObjects}(s, a, b, c, r)\).
‣ AddTensorProductToInternalHomRightAdjunctMorphism ( C, F ) | ( operation ) |
‣ AddTensorProductToInternalHomRightAdjunctMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductToInternalHomRightAdjunctMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, f ) \mapsto \mathtt{TensorProductToInternalHomRightAdjunctMorphism}(a, b, f)\).
‣ AddTensorProductToInternalHomRightAdjunctMorphismWithGivenInternalHom ( C, F ) | ( operation ) |
‣ AddTensorProductToInternalHomRightAdjunctMorphismWithGivenInternalHom ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductToInternalHomRightAdjunctMorphismWithGivenInternalHom
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, f, i ) \mapsto \mathtt{TensorProductToInternalHomRightAdjunctMorphismWithGivenInternalHom}(a, b, f, i)\).
‣ AddTensorProductToInternalHomRightAdjunctionIsomorphism ( C, F ) | ( operation ) |
‣ AddTensorProductToInternalHomRightAdjunctionIsomorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductToInternalHomRightAdjunctionIsomorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, c ) \mapsto \mathtt{TensorProductToInternalHomRightAdjunctionIsomorphism}(a, b, c)\).
‣ AddTensorProductToInternalHomRightAdjunctionIsomorphismWithGivenObjects ( C, F ) | ( operation ) |
‣ AddTensorProductToInternalHomRightAdjunctionIsomorphismWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductToInternalHomRightAdjunctionIsomorphismWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, b, c, r ) \mapsto \mathtt{TensorProductToInternalHomRightAdjunctionIsomorphismWithGivenObjects}(s, a, b, c, r)\).
‣ AddUniversalPropertyOfDual ( C, F ) | ( operation ) |
‣ AddUniversalPropertyOfDual ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation UniversalPropertyOfDual
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( t, a, alpha ) \mapsto \mathtt{UniversalPropertyOfDual}(t, a, alpha)\).
‣ AddCoDualOnMorphisms ( C, F ) | ( operation ) |
‣ AddCoDualOnMorphisms ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation CoDualOnMorphisms
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( alpha ) \mapsto \mathtt{CoDualOnMorphisms}(alpha)\).
‣ AddCoDualOnMorphismsWithGivenCoDuals ( C, F ) | ( operation ) |
‣ AddCoDualOnMorphismsWithGivenCoDuals ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation CoDualOnMorphismsWithGivenCoDuals
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, alpha, r ) \mapsto \mathtt{CoDualOnMorphismsWithGivenCoDuals}(s, alpha, r)\).
‣ AddCoDualOnObjects ( C, F ) | ( operation ) |
‣ AddCoDualOnObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation CoDualOnObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{CoDualOnObjects}(a)\).
‣ AddCoDualityTensorProductCompatibilityMorphism ( C, F ) | ( operation ) |
‣ AddCoDualityTensorProductCompatibilityMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation CoDualityTensorProductCompatibilityMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{CoDualityTensorProductCompatibilityMorphism}(a, b)\).
‣ AddCoDualityTensorProductCompatibilityMorphismWithGivenObjects ( C, F ) | ( operation ) |
‣ AddCoDualityTensorProductCompatibilityMorphismWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation CoDualityTensorProductCompatibilityMorphismWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, b, r ) \mapsto \mathtt{CoDualityTensorProductCompatibilityMorphismWithGivenObjects}(s, a, b, r)\).
‣ AddCoLambdaElimination ( C, F ) | ( operation ) |
‣ AddCoLambdaElimination ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation CoLambdaElimination
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, alpha ) \mapsto \mathtt{CoLambdaElimination}(a, b, alpha)\).
‣ AddCoLambdaIntroduction ( C, F ) | ( operation ) |
‣ AddCoLambdaIntroduction ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation CoLambdaIntroduction
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( alpha ) \mapsto \mathtt{CoLambdaIntroduction}(alpha)\).
‣ AddCoclosedEvaluationForCoDual ( C, F ) | ( operation ) |
‣ AddCoclosedEvaluationForCoDual ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation CoclosedEvaluationForCoDual
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{CoclosedEvaluationForCoDual}(a)\).
‣ AddCoclosedEvaluationForCoDualWithGivenTensorProduct ( C, F ) | ( operation ) |
‣ AddCoclosedEvaluationForCoDualWithGivenTensorProduct ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation CoclosedEvaluationForCoDualWithGivenTensorProduct
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, r ) \mapsto \mathtt{CoclosedEvaluationForCoDualWithGivenTensorProduct}(s, a, r)\).
‣ AddCoclosedMonoidalLeftCoevaluationMorphism ( C, F ) | ( operation ) |
‣ AddCoclosedMonoidalLeftCoevaluationMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation CoclosedMonoidalLeftCoevaluationMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{CoclosedMonoidalLeftCoevaluationMorphism}(a, b)\).
‣ AddCoclosedMonoidalLeftCoevaluationMorphismWithGivenSource ( C, F ) | ( operation ) |
‣ AddCoclosedMonoidalLeftCoevaluationMorphismWithGivenSource ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation CoclosedMonoidalLeftCoevaluationMorphismWithGivenSource
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, s ) \mapsto \mathtt{CoclosedMonoidalLeftCoevaluationMorphismWithGivenSource}(a, b, s)\).
‣ AddCoclosedMonoidalLeftEvaluationMorphism ( C, F ) | ( operation ) |
‣ AddCoclosedMonoidalLeftEvaluationMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation CoclosedMonoidalLeftEvaluationMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{CoclosedMonoidalLeftEvaluationMorphism}(a, b)\).
‣ AddCoclosedMonoidalLeftEvaluationMorphismWithGivenRange ( C, F ) | ( operation ) |
‣ AddCoclosedMonoidalLeftEvaluationMorphismWithGivenRange ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation CoclosedMonoidalLeftEvaluationMorphismWithGivenRange
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, r ) \mapsto \mathtt{CoclosedMonoidalLeftEvaluationMorphismWithGivenRange}(a, b, r)\).
‣ AddCoclosedMonoidalRightCoevaluationMorphism ( C, F ) | ( operation ) |
‣ AddCoclosedMonoidalRightCoevaluationMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation CoclosedMonoidalRightCoevaluationMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{CoclosedMonoidalRightCoevaluationMorphism}(a, b)\).
‣ AddCoclosedMonoidalRightCoevaluationMorphismWithGivenSource ( C, F ) | ( operation ) |
‣ AddCoclosedMonoidalRightCoevaluationMorphismWithGivenSource ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation CoclosedMonoidalRightCoevaluationMorphismWithGivenSource
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, s ) \mapsto \mathtt{CoclosedMonoidalRightCoevaluationMorphismWithGivenSource}(a, b, s)\).
‣ AddCoclosedMonoidalRightEvaluationMorphism ( C, F ) | ( operation ) |
‣ AddCoclosedMonoidalRightEvaluationMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation CoclosedMonoidalRightEvaluationMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{CoclosedMonoidalRightEvaluationMorphism}(a, b)\).
‣ AddCoclosedMonoidalRightEvaluationMorphismWithGivenRange ( C, F ) | ( operation ) |
‣ AddCoclosedMonoidalRightEvaluationMorphismWithGivenRange ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation CoclosedMonoidalRightEvaluationMorphismWithGivenRange
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, r ) \mapsto \mathtt{CoclosedMonoidalRightEvaluationMorphismWithGivenRange}(a, b, r)\).
‣ AddInternalCoHomOnMorphisms ( C, F ) | ( operation ) |
‣ AddInternalCoHomOnMorphisms ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation InternalCoHomOnMorphisms
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( alpha, beta ) \mapsto \mathtt{InternalCoHomOnMorphisms}(alpha, beta)\).
‣ AddInternalCoHomOnMorphismsWithGivenInternalCoHoms ( C, F ) | ( operation ) |
‣ AddInternalCoHomOnMorphismsWithGivenInternalCoHoms ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation InternalCoHomOnMorphismsWithGivenInternalCoHoms
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, alpha, beta, r ) \mapsto \mathtt{InternalCoHomOnMorphismsWithGivenInternalCoHoms}(s, alpha, beta, r)\).
‣ AddInternalCoHomOnObjects ( C, F ) | ( operation ) |
‣ AddInternalCoHomOnObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation InternalCoHomOnObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{InternalCoHomOnObjects}(a, b)\).
‣ AddInternalCoHomTensorProductCompatibilityMorphism ( C, F ) | ( operation ) |
‣ AddInternalCoHomTensorProductCompatibilityMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation InternalCoHomTensorProductCompatibilityMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( list ) \mapsto \mathtt{InternalCoHomTensorProductCompatibilityMorphism}(list)\).
‣ AddInternalCoHomTensorProductCompatibilityMorphismWithGivenObjects ( C, F ) | ( operation ) |
‣ AddInternalCoHomTensorProductCompatibilityMorphismWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation InternalCoHomTensorProductCompatibilityMorphismWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( source, list, range ) \mapsto \mathtt{InternalCoHomTensorProductCompatibilityMorphismWithGivenObjects}(source, list, range)\).
‣ AddInternalCoHomToTensorProductLeftAdjunctMorphism ( C, F ) | ( operation ) |
‣ AddInternalCoHomToTensorProductLeftAdjunctMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation InternalCoHomToTensorProductLeftAdjunctMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, c, f ) \mapsto \mathtt{InternalCoHomToTensorProductLeftAdjunctMorphism}(a, c, f)\).
‣ AddInternalCoHomToTensorProductLeftAdjunctMorphismWithGivenTensorProduct ( C, F ) | ( operation ) |
‣ AddInternalCoHomToTensorProductLeftAdjunctMorphismWithGivenTensorProduct ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation InternalCoHomToTensorProductLeftAdjunctMorphismWithGivenTensorProduct
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, c, f, t ) \mapsto \mathtt{InternalCoHomToTensorProductLeftAdjunctMorphismWithGivenTensorProduct}(a, c, f, t)\).
‣ AddInternalCoHomToTensorProductRightAdjunctMorphism ( C, F ) | ( operation ) |
‣ AddInternalCoHomToTensorProductRightAdjunctMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation InternalCoHomToTensorProductRightAdjunctMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, f ) \mapsto \mathtt{InternalCoHomToTensorProductRightAdjunctMorphism}(a, b, f)\).
‣ AddInternalCoHomToTensorProductRightAdjunctMorphismWithGivenTensorProduct ( C, F ) | ( operation ) |
‣ AddInternalCoHomToTensorProductRightAdjunctMorphismWithGivenTensorProduct ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation InternalCoHomToTensorProductRightAdjunctMorphismWithGivenTensorProduct
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, f, t ) \mapsto \mathtt{InternalCoHomToTensorProductRightAdjunctMorphismWithGivenTensorProduct}(a, b, f, t)\).
‣ AddIsomorphismFromCoDualObjectToInternalCoHomFromTensorUnit ( C, F ) | ( operation ) |
‣ AddIsomorphismFromCoDualObjectToInternalCoHomFromTensorUnit ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromCoDualObjectToInternalCoHomFromTensorUnit
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{IsomorphismFromCoDualObjectToInternalCoHomFromTensorUnit}(a)\).
‣ AddIsomorphismFromInternalCoHomFromTensorUnitToCoDualObject ( C, F ) | ( operation ) |
‣ AddIsomorphismFromInternalCoHomFromTensorUnitToCoDualObject ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromInternalCoHomFromTensorUnitToCoDualObject
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{IsomorphismFromInternalCoHomFromTensorUnitToCoDualObject}(a)\).
‣ AddIsomorphismFromInternalCoHomToObject ( C, F ) | ( operation ) |
‣ AddIsomorphismFromInternalCoHomToObject ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromInternalCoHomToObject
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{IsomorphismFromInternalCoHomToObject}(a)\).
‣ AddIsomorphismFromInternalCoHomToObjectWithGivenInternalCoHom ( C, F ) | ( operation ) |
‣ AddIsomorphismFromInternalCoHomToObjectWithGivenInternalCoHom ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromInternalCoHomToObjectWithGivenInternalCoHom
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, s ) \mapsto \mathtt{IsomorphismFromInternalCoHomToObjectWithGivenInternalCoHom}(a, s)\).
‣ AddIsomorphismFromObjectToInternalCoHom ( C, F ) | ( operation ) |
‣ AddIsomorphismFromObjectToInternalCoHom ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromObjectToInternalCoHom
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{IsomorphismFromObjectToInternalCoHom}(a)\).
‣ AddIsomorphismFromObjectToInternalCoHomWithGivenInternalCoHom ( C, F ) | ( operation ) |
‣ AddIsomorphismFromObjectToInternalCoHomWithGivenInternalCoHom ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromObjectToInternalCoHomWithGivenInternalCoHom
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, r ) \mapsto \mathtt{IsomorphismFromObjectToInternalCoHomWithGivenInternalCoHom}(a, r)\).
‣ AddMonoidalPostCoComposeMorphism ( C, F ) | ( operation ) |
‣ AddMonoidalPostCoComposeMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MonoidalPostCoComposeMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, c ) \mapsto \mathtt{MonoidalPostCoComposeMorphism}(a, b, c)\).
‣ AddMonoidalPostCoComposeMorphismWithGivenObjects ( C, F ) | ( operation ) |
‣ AddMonoidalPostCoComposeMorphismWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MonoidalPostCoComposeMorphismWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, b, c, r ) \mapsto \mathtt{MonoidalPostCoComposeMorphismWithGivenObjects}(s, a, b, c, r)\).
‣ AddMonoidalPreCoComposeMorphism ( C, F ) | ( operation ) |
‣ AddMonoidalPreCoComposeMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MonoidalPreCoComposeMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, c ) \mapsto \mathtt{MonoidalPreCoComposeMorphism}(a, b, c)\).
‣ AddMonoidalPreCoComposeMorphismWithGivenObjects ( C, F ) | ( operation ) |
‣ AddMonoidalPreCoComposeMorphismWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MonoidalPreCoComposeMorphismWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, b, c, r ) \mapsto \mathtt{MonoidalPreCoComposeMorphismWithGivenObjects}(s, a, b, c, r)\).
‣ AddMorphismFromCoBidual ( C, F ) | ( operation ) |
‣ AddMorphismFromCoBidual ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismFromCoBidual
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{MorphismFromCoBidual}(a)\).
‣ AddMorphismFromCoBidualWithGivenCoBidual ( C, F ) | ( operation ) |
‣ AddMorphismFromCoBidualWithGivenCoBidual ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismFromCoBidualWithGivenCoBidual
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, s ) \mapsto \mathtt{MorphismFromCoBidualWithGivenCoBidual}(a, s)\).
‣ AddMorphismFromInternalCoHomToTensorProduct ( C, F ) | ( operation ) |
‣ AddMorphismFromInternalCoHomToTensorProduct ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismFromInternalCoHomToTensorProduct
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{MorphismFromInternalCoHomToTensorProduct}(a, b)\).
‣ AddMorphismFromInternalCoHomToTensorProductWithGivenObjects ( C, F ) | ( operation ) |
‣ AddMorphismFromInternalCoHomToTensorProductWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismFromInternalCoHomToTensorProductWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, b, r ) \mapsto \mathtt{MorphismFromInternalCoHomToTensorProductWithGivenObjects}(s, a, b, r)\).
‣ AddTensorProductToInternalCoHomLeftAdjunctMorphism ( C, F ) | ( operation ) |
‣ AddTensorProductToInternalCoHomLeftAdjunctMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductToInternalCoHomLeftAdjunctMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( b, c, g ) \mapsto \mathtt{TensorProductToInternalCoHomLeftAdjunctMorphism}(b, c, g)\).
‣ AddTensorProductToInternalCoHomLeftAdjunctMorphismWithGivenInternalCoHom ( C, F ) | ( operation ) |
‣ AddTensorProductToInternalCoHomLeftAdjunctMorphismWithGivenInternalCoHom ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductToInternalCoHomLeftAdjunctMorphismWithGivenInternalCoHom
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( b, c, g, i ) \mapsto \mathtt{TensorProductToInternalCoHomLeftAdjunctMorphismWithGivenInternalCoHom}(b, c, g, i)\).
‣ AddTensorProductToInternalCoHomRightAdjunctMorphism ( C, F ) | ( operation ) |
‣ AddTensorProductToInternalCoHomRightAdjunctMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductToInternalCoHomRightAdjunctMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( b, c, g ) \mapsto \mathtt{TensorProductToInternalCoHomRightAdjunctMorphism}(b, c, g)\).
‣ AddTensorProductToInternalCoHomRightAdjunctMorphismWithGivenInternalCoHom ( C, F ) | ( operation ) |
‣ AddTensorProductToInternalCoHomRightAdjunctMorphismWithGivenInternalCoHom ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductToInternalCoHomRightAdjunctMorphismWithGivenInternalCoHom
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( b, c, g, i ) \mapsto \mathtt{TensorProductToInternalCoHomRightAdjunctMorphismWithGivenInternalCoHom}(b, c, g, i)\).
‣ AddUniversalPropertyOfCoDual ( C, F ) | ( operation ) |
‣ AddUniversalPropertyOfCoDual ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation UniversalPropertyOfCoDual
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( t, a, alpha ) \mapsto \mathtt{UniversalPropertyOfCoDual}(t, a, alpha)\).
‣ AddIsomorphismFromLeftDualObjectToLeftInternalHomIntoTensorUnit ( C, F ) | ( operation ) |
‣ AddIsomorphismFromLeftDualObjectToLeftInternalHomIntoTensorUnit ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromLeftDualObjectToLeftInternalHomIntoTensorUnit
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{IsomorphismFromLeftDualObjectToLeftInternalHomIntoTensorUnit}(a)\).
‣ AddIsomorphismFromLeftInternalHomIntoTensorUnitToLeftDualObject ( C, F ) | ( operation ) |
‣ AddIsomorphismFromLeftInternalHomIntoTensorUnitToLeftDualObject ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromLeftInternalHomIntoTensorUnitToLeftDualObject
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{IsomorphismFromLeftInternalHomIntoTensorUnitToLeftDualObject}(a)\).
‣ AddIsomorphismFromLeftInternalHomToObject ( C, F ) | ( operation ) |
‣ AddIsomorphismFromLeftInternalHomToObject ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromLeftInternalHomToObject
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{IsomorphismFromLeftInternalHomToObject}(a)\).
‣ AddIsomorphismFromLeftInternalHomToObjectWithGivenLeftInternalHom ( C, F ) | ( operation ) |
‣ AddIsomorphismFromLeftInternalHomToObjectWithGivenLeftInternalHom ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromLeftInternalHomToObjectWithGivenLeftInternalHom
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, s ) \mapsto \mathtt{IsomorphismFromLeftInternalHomToObjectWithGivenLeftInternalHom}(a, s)\).
‣ AddIsomorphismFromObjectToLeftInternalHom ( C, F ) | ( operation ) |
‣ AddIsomorphismFromObjectToLeftInternalHom ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromObjectToLeftInternalHom
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{IsomorphismFromObjectToLeftInternalHom}(a)\).
‣ AddIsomorphismFromObjectToLeftInternalHomWithGivenLeftInternalHom ( C, F ) | ( operation ) |
‣ AddIsomorphismFromObjectToLeftInternalHomWithGivenLeftInternalHom ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromObjectToLeftInternalHomWithGivenLeftInternalHom
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, r ) \mapsto \mathtt{IsomorphismFromObjectToLeftInternalHomWithGivenLeftInternalHom}(a, r)\).
‣ AddLeftClosedMonoidalCoevaluationMorphism ( C, F ) | ( operation ) |
‣ AddLeftClosedMonoidalCoevaluationMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftClosedMonoidalCoevaluationMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{LeftClosedMonoidalCoevaluationMorphism}(a, b)\).
‣ AddLeftClosedMonoidalCoevaluationMorphismWithGivenRange ( C, F ) | ( operation ) |
‣ AddLeftClosedMonoidalCoevaluationMorphismWithGivenRange ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftClosedMonoidalCoevaluationMorphismWithGivenRange
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, r ) \mapsto \mathtt{LeftClosedMonoidalCoevaluationMorphismWithGivenRange}(a, b, r)\).
‣ AddLeftClosedMonoidalEvaluationForLeftDual ( C, F ) | ( operation ) |
‣ AddLeftClosedMonoidalEvaluationForLeftDual ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftClosedMonoidalEvaluationForLeftDual
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{LeftClosedMonoidalEvaluationForLeftDual}(a)\).
‣ AddLeftClosedMonoidalEvaluationForLeftDualWithGivenTensorProduct ( C, F ) | ( operation ) |
‣ AddLeftClosedMonoidalEvaluationForLeftDualWithGivenTensorProduct ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftClosedMonoidalEvaluationForLeftDualWithGivenTensorProduct
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, r ) \mapsto \mathtt{LeftClosedMonoidalEvaluationForLeftDualWithGivenTensorProduct}(s, a, r)\).
‣ AddLeftClosedMonoidalEvaluationMorphism ( C, F ) | ( operation ) |
‣ AddLeftClosedMonoidalEvaluationMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftClosedMonoidalEvaluationMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{LeftClosedMonoidalEvaluationMorphism}(a, b)\).
‣ AddLeftClosedMonoidalEvaluationMorphismWithGivenSource ( C, F ) | ( operation ) |
‣ AddLeftClosedMonoidalEvaluationMorphismWithGivenSource ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftClosedMonoidalEvaluationMorphismWithGivenSource
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, s ) \mapsto \mathtt{LeftClosedMonoidalEvaluationMorphismWithGivenSource}(a, b, s)\).
‣ AddLeftClosedMonoidalLambdaElimination ( C, F ) | ( operation ) |
‣ AddLeftClosedMonoidalLambdaElimination ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftClosedMonoidalLambdaElimination
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, alpha ) \mapsto \mathtt{LeftClosedMonoidalLambdaElimination}(a, b, alpha)\).
‣ AddLeftClosedMonoidalLambdaIntroduction ( C, F ) | ( operation ) |
‣ AddLeftClosedMonoidalLambdaIntroduction ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftClosedMonoidalLambdaIntroduction
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( alpha ) \mapsto \mathtt{LeftClosedMonoidalLambdaIntroduction}(alpha)\).
‣ AddLeftClosedMonoidalPostComposeMorphism ( C, F ) | ( operation ) |
‣ AddLeftClosedMonoidalPostComposeMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftClosedMonoidalPostComposeMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, c ) \mapsto \mathtt{LeftClosedMonoidalPostComposeMorphism}(a, b, c)\).
‣ AddLeftClosedMonoidalPostComposeMorphismWithGivenObjects ( C, F ) | ( operation ) |
‣ AddLeftClosedMonoidalPostComposeMorphismWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftClosedMonoidalPostComposeMorphismWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, b, c, r ) \mapsto \mathtt{LeftClosedMonoidalPostComposeMorphismWithGivenObjects}(s, a, b, c, r)\).
‣ AddLeftClosedMonoidalPreComposeMorphism ( C, F ) | ( operation ) |
‣ AddLeftClosedMonoidalPreComposeMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftClosedMonoidalPreComposeMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, c ) \mapsto \mathtt{LeftClosedMonoidalPreComposeMorphism}(a, b, c)\).
‣ AddLeftClosedMonoidalPreComposeMorphismWithGivenObjects ( C, F ) | ( operation ) |
‣ AddLeftClosedMonoidalPreComposeMorphismWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftClosedMonoidalPreComposeMorphismWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, b, c, r ) \mapsto \mathtt{LeftClosedMonoidalPreComposeMorphismWithGivenObjects}(s, a, b, c, r)\).
‣ AddLeftDualOnMorphisms ( C, F ) | ( operation ) |
‣ AddLeftDualOnMorphisms ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftDualOnMorphisms
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( alpha ) \mapsto \mathtt{LeftDualOnMorphisms}(alpha)\).
‣ AddLeftDualOnMorphismsWithGivenLeftDuals ( C, F ) | ( operation ) |
‣ AddLeftDualOnMorphismsWithGivenLeftDuals ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftDualOnMorphismsWithGivenLeftDuals
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, alpha, r ) \mapsto \mathtt{LeftDualOnMorphismsWithGivenLeftDuals}(s, alpha, r)\).
‣ AddLeftDualOnObjects ( C, F ) | ( operation ) |
‣ AddLeftDualOnObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftDualOnObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{LeftDualOnObjects}(a)\).
‣ AddLeftInternalHomOnMorphisms ( C, F ) | ( operation ) |
‣ AddLeftInternalHomOnMorphisms ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftInternalHomOnMorphisms
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( alpha, beta ) \mapsto \mathtt{LeftInternalHomOnMorphisms}(alpha, beta)\).
‣ AddLeftInternalHomOnMorphismsWithGivenLeftInternalHoms ( C, F ) | ( operation ) |
‣ AddLeftInternalHomOnMorphismsWithGivenLeftInternalHoms ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftInternalHomOnMorphismsWithGivenLeftInternalHoms
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, alpha, beta, r ) \mapsto \mathtt{LeftInternalHomOnMorphismsWithGivenLeftInternalHoms}(s, alpha, beta, r)\).
‣ AddLeftInternalHomOnObjects ( C, F ) | ( operation ) |
‣ AddLeftInternalHomOnObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftInternalHomOnObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{LeftInternalHomOnObjects}(a, b)\).
‣ AddLeftInternalHomToTensorProductAdjunctMorphism ( C, F ) | ( operation ) |
‣ AddLeftInternalHomToTensorProductAdjunctMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftInternalHomToTensorProductAdjunctMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( b, c, g ) \mapsto \mathtt{LeftInternalHomToTensorProductAdjunctMorphism}(b, c, g)\).
‣ AddLeftInternalHomToTensorProductAdjunctMorphismWithGivenTensorProduct ( C, F ) | ( operation ) |
‣ AddLeftInternalHomToTensorProductAdjunctMorphismWithGivenTensorProduct ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftInternalHomToTensorProductAdjunctMorphismWithGivenTensorProduct
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( b, c, g, t ) \mapsto \mathtt{LeftInternalHomToTensorProductAdjunctMorphismWithGivenTensorProduct}(b, c, g, t)\).
‣ AddMorphismFromTensorProductToLeftInternalHom ( C, F ) | ( operation ) |
‣ AddMorphismFromTensorProductToLeftInternalHom ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismFromTensorProductToLeftInternalHom
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{MorphismFromTensorProductToLeftInternalHom}(a, b)\).
‣ AddMorphismFromTensorProductToLeftInternalHomWithGivenObjects ( C, F ) | ( operation ) |
‣ AddMorphismFromTensorProductToLeftInternalHomWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismFromTensorProductToLeftInternalHomWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, b, r ) \mapsto \mathtt{MorphismFromTensorProductToLeftInternalHomWithGivenObjects}(s, a, b, r)\).
‣ AddMorphismToLeftBidual ( C, F ) | ( operation ) |
‣ AddMorphismToLeftBidual ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismToLeftBidual
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{MorphismToLeftBidual}(a)\).
‣ AddMorphismToLeftBidualWithGivenLeftBidual ( C, F ) | ( operation ) |
‣ AddMorphismToLeftBidualWithGivenLeftBidual ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismToLeftBidualWithGivenLeftBidual
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, r ) \mapsto \mathtt{MorphismToLeftBidualWithGivenLeftBidual}(a, r)\).
‣ AddTensorProductLeftDualityCompatibilityMorphism ( C, F ) | ( operation ) |
‣ AddTensorProductLeftDualityCompatibilityMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductLeftDualityCompatibilityMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{TensorProductLeftDualityCompatibilityMorphism}(a, b)\).
‣ AddTensorProductLeftDualityCompatibilityMorphismWithGivenObjects ( C, F ) | ( operation ) |
‣ AddTensorProductLeftDualityCompatibilityMorphismWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductLeftDualityCompatibilityMorphismWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, b, r ) \mapsto \mathtt{TensorProductLeftDualityCompatibilityMorphismWithGivenObjects}(s, a, b, r)\).
‣ AddTensorProductLeftInternalHomCompatibilityMorphism ( C, F ) | ( operation ) |
‣ AddTensorProductLeftInternalHomCompatibilityMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductLeftInternalHomCompatibilityMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( list ) \mapsto \mathtt{TensorProductLeftInternalHomCompatibilityMorphism}(list)\).
‣ AddTensorProductLeftInternalHomCompatibilityMorphismWithGivenObjects ( C, F ) | ( operation ) |
‣ AddTensorProductLeftInternalHomCompatibilityMorphismWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductLeftInternalHomCompatibilityMorphismWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( source, list, range ) \mapsto \mathtt{TensorProductLeftInternalHomCompatibilityMorphismWithGivenObjects}(source, list, range)\).
‣ AddTensorProductToLeftInternalHomAdjunctMorphism ( C, F ) | ( operation ) |
‣ AddTensorProductToLeftInternalHomAdjunctMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductToLeftInternalHomAdjunctMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, f ) \mapsto \mathtt{TensorProductToLeftInternalHomAdjunctMorphism}(a, b, f)\).
‣ AddTensorProductToLeftInternalHomAdjunctMorphismWithGivenLeftInternalHom ( C, F ) | ( operation ) |
‣ AddTensorProductToLeftInternalHomAdjunctMorphismWithGivenLeftInternalHom ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductToLeftInternalHomAdjunctMorphismWithGivenLeftInternalHom
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, f, i ) \mapsto \mathtt{TensorProductToLeftInternalHomAdjunctMorphismWithGivenLeftInternalHom}(a, b, f, i)\).
‣ AddUniversalPropertyOfLeftDual ( C, F ) | ( operation ) |
‣ AddUniversalPropertyOfLeftDual ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation UniversalPropertyOfLeftDual
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( t, a, alpha ) \mapsto \mathtt{UniversalPropertyOfLeftDual}(t, a, alpha)\).
‣ AddIsomorphismFromLeftCoDualObjectToLeftInternalCoHomFromTensorUnit ( C, F ) | ( operation ) |
‣ AddIsomorphismFromLeftCoDualObjectToLeftInternalCoHomFromTensorUnit ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromLeftCoDualObjectToLeftInternalCoHomFromTensorUnit
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{IsomorphismFromLeftCoDualObjectToLeftInternalCoHomFromTensorUnit}(a)\).
‣ AddIsomorphismFromLeftInternalCoHomFromTensorUnitToLeftCoDualObject ( C, F ) | ( operation ) |
‣ AddIsomorphismFromLeftInternalCoHomFromTensorUnitToLeftCoDualObject ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromLeftInternalCoHomFromTensorUnitToLeftCoDualObject
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{IsomorphismFromLeftInternalCoHomFromTensorUnitToLeftCoDualObject}(a)\).
‣ AddIsomorphismFromLeftInternalCoHomToObject ( C, F ) | ( operation ) |
‣ AddIsomorphismFromLeftInternalCoHomToObject ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromLeftInternalCoHomToObject
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{IsomorphismFromLeftInternalCoHomToObject}(a)\).
‣ AddIsomorphismFromLeftInternalCoHomToObjectWithGivenLeftInternalCoHom ( C, F ) | ( operation ) |
‣ AddIsomorphismFromLeftInternalCoHomToObjectWithGivenLeftInternalCoHom ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromLeftInternalCoHomToObjectWithGivenLeftInternalCoHom
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, s ) \mapsto \mathtt{IsomorphismFromLeftInternalCoHomToObjectWithGivenLeftInternalCoHom}(a, s)\).
‣ AddIsomorphismFromObjectToLeftInternalCoHom ( C, F ) | ( operation ) |
‣ AddIsomorphismFromObjectToLeftInternalCoHom ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromObjectToLeftInternalCoHom
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{IsomorphismFromObjectToLeftInternalCoHom}(a)\).
‣ AddIsomorphismFromObjectToLeftInternalCoHomWithGivenLeftInternalCoHom ( C, F ) | ( operation ) |
‣ AddIsomorphismFromObjectToLeftInternalCoHomWithGivenLeftInternalCoHom ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromObjectToLeftInternalCoHomWithGivenLeftInternalCoHom
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, r ) \mapsto \mathtt{IsomorphismFromObjectToLeftInternalCoHomWithGivenLeftInternalCoHom}(a, r)\).
‣ AddLeftCoDualOnMorphisms ( C, F ) | ( operation ) |
‣ AddLeftCoDualOnMorphisms ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftCoDualOnMorphisms
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( alpha ) \mapsto \mathtt{LeftCoDualOnMorphisms}(alpha)\).
‣ AddLeftCoDualOnMorphismsWithGivenLeftCoDuals ( C, F ) | ( operation ) |
‣ AddLeftCoDualOnMorphismsWithGivenLeftCoDuals ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftCoDualOnMorphismsWithGivenLeftCoDuals
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, alpha, r ) \mapsto \mathtt{LeftCoDualOnMorphismsWithGivenLeftCoDuals}(s, alpha, r)\).
‣ AddLeftCoDualOnObjects ( C, F ) | ( operation ) |
‣ AddLeftCoDualOnObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftCoDualOnObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{LeftCoDualOnObjects}(a)\).
‣ AddLeftCoDualityTensorProductCompatibilityMorphism ( C, F ) | ( operation ) |
‣ AddLeftCoDualityTensorProductCompatibilityMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftCoDualityTensorProductCompatibilityMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{LeftCoDualityTensorProductCompatibilityMorphism}(a, b)\).
‣ AddLeftCoDualityTensorProductCompatibilityMorphismWithGivenObjects ( C, F ) | ( operation ) |
‣ AddLeftCoDualityTensorProductCompatibilityMorphismWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftCoDualityTensorProductCompatibilityMorphismWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, b, r ) \mapsto \mathtt{LeftCoDualityTensorProductCompatibilityMorphismWithGivenObjects}(s, a, b, r)\).
‣ AddLeftCoclosedMonoidalCoevaluationMorphism ( C, F ) | ( operation ) |
‣ AddLeftCoclosedMonoidalCoevaluationMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftCoclosedMonoidalCoevaluationMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{LeftCoclosedMonoidalCoevaluationMorphism}(a, b)\).
‣ AddLeftCoclosedMonoidalCoevaluationMorphismWithGivenSource ( C, F ) | ( operation ) |
‣ AddLeftCoclosedMonoidalCoevaluationMorphismWithGivenSource ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftCoclosedMonoidalCoevaluationMorphismWithGivenSource
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, s ) \mapsto \mathtt{LeftCoclosedMonoidalCoevaluationMorphismWithGivenSource}(a, b, s)\).
‣ AddLeftCoclosedMonoidalEvaluationForLeftCoDual ( C, F ) | ( operation ) |
‣ AddLeftCoclosedMonoidalEvaluationForLeftCoDual ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftCoclosedMonoidalEvaluationForLeftCoDual
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{LeftCoclosedMonoidalEvaluationForLeftCoDual}(a)\).
‣ AddLeftCoclosedMonoidalEvaluationForLeftCoDualWithGivenTensorProduct ( C, F ) | ( operation ) |
‣ AddLeftCoclosedMonoidalEvaluationForLeftCoDualWithGivenTensorProduct ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftCoclosedMonoidalEvaluationForLeftCoDualWithGivenTensorProduct
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, r ) \mapsto \mathtt{LeftCoclosedMonoidalEvaluationForLeftCoDualWithGivenTensorProduct}(s, a, r)\).
‣ AddLeftCoclosedMonoidalEvaluationMorphism ( C, F ) | ( operation ) |
‣ AddLeftCoclosedMonoidalEvaluationMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftCoclosedMonoidalEvaluationMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{LeftCoclosedMonoidalEvaluationMorphism}(a, b)\).
‣ AddLeftCoclosedMonoidalEvaluationMorphismWithGivenRange ( C, F ) | ( operation ) |
‣ AddLeftCoclosedMonoidalEvaluationMorphismWithGivenRange ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftCoclosedMonoidalEvaluationMorphismWithGivenRange
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, r ) \mapsto \mathtt{LeftCoclosedMonoidalEvaluationMorphismWithGivenRange}(a, b, r)\).
‣ AddLeftCoclosedMonoidalLambdaElimination ( C, F ) | ( operation ) |
‣ AddLeftCoclosedMonoidalLambdaElimination ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftCoclosedMonoidalLambdaElimination
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, alpha ) \mapsto \mathtt{LeftCoclosedMonoidalLambdaElimination}(a, b, alpha)\).
‣ AddLeftCoclosedMonoidalLambdaIntroduction ( C, F ) | ( operation ) |
‣ AddLeftCoclosedMonoidalLambdaIntroduction ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftCoclosedMonoidalLambdaIntroduction
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( alpha ) \mapsto \mathtt{LeftCoclosedMonoidalLambdaIntroduction}(alpha)\).
‣ AddLeftCoclosedMonoidalPostCoComposeMorphism ( C, F ) | ( operation ) |
‣ AddLeftCoclosedMonoidalPostCoComposeMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftCoclosedMonoidalPostCoComposeMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, c ) \mapsto \mathtt{LeftCoclosedMonoidalPostCoComposeMorphism}(a, b, c)\).
‣ AddLeftCoclosedMonoidalPostCoComposeMorphismWithGivenObjects ( C, F ) | ( operation ) |
‣ AddLeftCoclosedMonoidalPostCoComposeMorphismWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftCoclosedMonoidalPostCoComposeMorphismWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, b, c, r ) \mapsto \mathtt{LeftCoclosedMonoidalPostCoComposeMorphismWithGivenObjects}(s, a, b, c, r)\).
‣ AddLeftCoclosedMonoidalPreCoComposeMorphism ( C, F ) | ( operation ) |
‣ AddLeftCoclosedMonoidalPreCoComposeMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftCoclosedMonoidalPreCoComposeMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, c ) \mapsto \mathtt{LeftCoclosedMonoidalPreCoComposeMorphism}(a, b, c)\).
‣ AddLeftCoclosedMonoidalPreCoComposeMorphismWithGivenObjects ( C, F ) | ( operation ) |
‣ AddLeftCoclosedMonoidalPreCoComposeMorphismWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftCoclosedMonoidalPreCoComposeMorphismWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, b, c, r ) \mapsto \mathtt{LeftCoclosedMonoidalPreCoComposeMorphismWithGivenObjects}(s, a, b, c, r)\).
‣ AddLeftInternalCoHomOnMorphisms ( C, F ) | ( operation ) |
‣ AddLeftInternalCoHomOnMorphisms ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftInternalCoHomOnMorphisms
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( alpha, beta ) \mapsto \mathtt{LeftInternalCoHomOnMorphisms}(alpha, beta)\).
‣ AddLeftInternalCoHomOnMorphismsWithGivenLeftInternalCoHoms ( C, F ) | ( operation ) |
‣ AddLeftInternalCoHomOnMorphismsWithGivenLeftInternalCoHoms ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftInternalCoHomOnMorphismsWithGivenLeftInternalCoHoms
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, alpha, beta, r ) \mapsto \mathtt{LeftInternalCoHomOnMorphismsWithGivenLeftInternalCoHoms}(s, alpha, beta, r)\).
‣ AddLeftInternalCoHomOnObjects ( C, F ) | ( operation ) |
‣ AddLeftInternalCoHomOnObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftInternalCoHomOnObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{LeftInternalCoHomOnObjects}(a, b)\).
‣ AddLeftInternalCoHomTensorProductCompatibilityMorphism ( C, F ) | ( operation ) |
‣ AddLeftInternalCoHomTensorProductCompatibilityMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftInternalCoHomTensorProductCompatibilityMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( list ) \mapsto \mathtt{LeftInternalCoHomTensorProductCompatibilityMorphism}(list)\).
‣ AddLeftInternalCoHomTensorProductCompatibilityMorphismWithGivenObjects ( C, F ) | ( operation ) |
‣ AddLeftInternalCoHomTensorProductCompatibilityMorphismWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftInternalCoHomTensorProductCompatibilityMorphismWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( source, list, range ) \mapsto \mathtt{LeftInternalCoHomTensorProductCompatibilityMorphismWithGivenObjects}(source, list, range)\).
‣ AddLeftInternalCoHomToTensorProductAdjunctMorphism ( C, F ) | ( operation ) |
‣ AddLeftInternalCoHomToTensorProductAdjunctMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftInternalCoHomToTensorProductAdjunctMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, c, f ) \mapsto \mathtt{LeftInternalCoHomToTensorProductAdjunctMorphism}(a, c, f)\).
‣ AddLeftInternalCoHomToTensorProductAdjunctMorphismWithGivenTensorProduct ( C, F ) | ( operation ) |
‣ AddLeftInternalCoHomToTensorProductAdjunctMorphismWithGivenTensorProduct ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftInternalCoHomToTensorProductAdjunctMorphismWithGivenTensorProduct
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, c, f, t ) \mapsto \mathtt{LeftInternalCoHomToTensorProductAdjunctMorphismWithGivenTensorProduct}(a, c, f, t)\).
‣ AddMorphismFromLeftCoBidual ( C, F ) | ( operation ) |
‣ AddMorphismFromLeftCoBidual ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismFromLeftCoBidual
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{MorphismFromLeftCoBidual}(a)\).
‣ AddMorphismFromLeftCoBidualWithGivenLeftCoBidual ( C, F ) | ( operation ) |
‣ AddMorphismFromLeftCoBidualWithGivenLeftCoBidual ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismFromLeftCoBidualWithGivenLeftCoBidual
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, s ) \mapsto \mathtt{MorphismFromLeftCoBidualWithGivenLeftCoBidual}(a, s)\).
‣ AddMorphismFromLeftInternalCoHomToTensorProduct ( C, F ) | ( operation ) |
‣ AddMorphismFromLeftInternalCoHomToTensorProduct ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismFromLeftInternalCoHomToTensorProduct
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{MorphismFromLeftInternalCoHomToTensorProduct}(a, b)\).
‣ AddMorphismFromLeftInternalCoHomToTensorProductWithGivenObjects ( C, F ) | ( operation ) |
‣ AddMorphismFromLeftInternalCoHomToTensorProductWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismFromLeftInternalCoHomToTensorProductWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, b, r ) \mapsto \mathtt{MorphismFromLeftInternalCoHomToTensorProductWithGivenObjects}(s, a, b, r)\).
‣ AddTensorProductToLeftInternalCoHomAdjunctMorphism ( C, F ) | ( operation ) |
‣ AddTensorProductToLeftInternalCoHomAdjunctMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductToLeftInternalCoHomAdjunctMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( b, c, g ) \mapsto \mathtt{TensorProductToLeftInternalCoHomAdjunctMorphism}(b, c, g)\).
‣ AddTensorProductToLeftInternalCoHomAdjunctMorphismWithGivenLeftInternalCoHom ( C, F ) | ( operation ) |
‣ AddTensorProductToLeftInternalCoHomAdjunctMorphismWithGivenLeftInternalCoHom ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductToLeftInternalCoHomAdjunctMorphismWithGivenLeftInternalCoHom
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( b, c, g, i ) \mapsto \mathtt{TensorProductToLeftInternalCoHomAdjunctMorphismWithGivenLeftInternalCoHom}(b, c, g, i)\).
‣ AddUniversalPropertyOfLeftCoDual ( C, F ) | ( operation ) |
‣ AddUniversalPropertyOfLeftCoDual ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation UniversalPropertyOfLeftCoDual
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( t, a, alpha ) \mapsto \mathtt{UniversalPropertyOfLeftCoDual}(t, a, alpha)\).
‣ AddAssociatorLeftToRight ( C, F ) | ( operation ) |
‣ AddAssociatorLeftToRight ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation AssociatorLeftToRight
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, c ) \mapsto \mathtt{AssociatorLeftToRight}(a, b, c)\).
‣ AddAssociatorLeftToRightWithGivenTensorProducts ( C, F ) | ( operation ) |
‣ AddAssociatorLeftToRightWithGivenTensorProducts ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation AssociatorLeftToRightWithGivenTensorProducts
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, b, c, r ) \mapsto \mathtt{AssociatorLeftToRightWithGivenTensorProducts}(s, a, b, c, r)\).
‣ AddAssociatorRightToLeft ( C, F ) | ( operation ) |
‣ AddAssociatorRightToLeft ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation AssociatorRightToLeft
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, c ) \mapsto \mathtt{AssociatorRightToLeft}(a, b, c)\).
‣ AddAssociatorRightToLeftWithGivenTensorProducts ( C, F ) | ( operation ) |
‣ AddAssociatorRightToLeftWithGivenTensorProducts ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation AssociatorRightToLeftWithGivenTensorProducts
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, b, c, r ) \mapsto \mathtt{AssociatorRightToLeftWithGivenTensorProducts}(s, a, b, c, r)\).
‣ AddLeftUnitor ( C, F ) | ( operation ) |
‣ AddLeftUnitor ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftUnitor
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{LeftUnitor}(a)\).
‣ AddLeftUnitorInverse ( C, F ) | ( operation ) |
‣ AddLeftUnitorInverse ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftUnitorInverse
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{LeftUnitorInverse}(a)\).
‣ AddLeftUnitorInverseWithGivenTensorProduct ( C, F ) | ( operation ) |
‣ AddLeftUnitorInverseWithGivenTensorProduct ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftUnitorInverseWithGivenTensorProduct
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, r ) \mapsto \mathtt{LeftUnitorInverseWithGivenTensorProduct}(a, r)\).
‣ AddLeftUnitorWithGivenTensorProduct ( C, F ) | ( operation ) |
‣ AddLeftUnitorWithGivenTensorProduct ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation LeftUnitorWithGivenTensorProduct
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, s ) \mapsto \mathtt{LeftUnitorWithGivenTensorProduct}(a, s)\).
‣ AddRightUnitor ( C, F ) | ( operation ) |
‣ AddRightUnitor ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation RightUnitor
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{RightUnitor}(a)\).
‣ AddRightUnitorInverse ( C, F ) | ( operation ) |
‣ AddRightUnitorInverse ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation RightUnitorInverse
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{RightUnitorInverse}(a)\).
‣ AddRightUnitorInverseWithGivenTensorProduct ( C, F ) | ( operation ) |
‣ AddRightUnitorInverseWithGivenTensorProduct ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation RightUnitorInverseWithGivenTensorProduct
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, r ) \mapsto \mathtt{RightUnitorInverseWithGivenTensorProduct}(a, r)\).
‣ AddRightUnitorWithGivenTensorProduct ( C, F ) | ( operation ) |
‣ AddRightUnitorWithGivenTensorProduct ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation RightUnitorWithGivenTensorProduct
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, s ) \mapsto \mathtt{RightUnitorWithGivenTensorProduct}(a, s)\).
‣ AddTensorProductOnMorphisms ( C, F ) | ( operation ) |
‣ AddTensorProductOnMorphisms ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductOnMorphisms
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( alpha, beta ) \mapsto \mathtt{TensorProductOnMorphisms}(alpha, beta)\).
‣ AddTensorProductOnMorphismsWithGivenTensorProducts ( C, F ) | ( operation ) |
‣ AddTensorProductOnMorphismsWithGivenTensorProducts ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductOnMorphismsWithGivenTensorProducts
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, alpha, beta, r ) \mapsto \mathtt{TensorProductOnMorphismsWithGivenTensorProducts}(s, alpha, beta, r)\).
‣ AddTensorProductOnObjects ( C, F ) | ( operation ) |
‣ AddTensorProductOnObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductOnObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( arg2, arg3 ) \mapsto \mathtt{TensorProductOnObjects}(arg2, arg3)\).
‣ AddTensorUnit ( C, F ) | ( operation ) |
‣ AddTensorUnit ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorUnit
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( ) \mapsto \mathtt{TensorUnit}()\).
‣ AddCoevaluationForDual ( C, F ) | ( operation ) |
‣ AddCoevaluationForDual ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation CoevaluationForDual
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{CoevaluationForDual}(a)\).
‣ AddCoevaluationForDualWithGivenTensorProduct ( C, F ) | ( operation ) |
‣ AddCoevaluationForDualWithGivenTensorProduct ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation CoevaluationForDualWithGivenTensorProduct
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, r ) \mapsto \mathtt{CoevaluationForDualWithGivenTensorProduct}(s, a, r)\).
‣ AddIsomorphismFromInternalHomToTensorProductWithDualObject ( C, F ) | ( operation ) |
‣ AddIsomorphismFromInternalHomToTensorProductWithDualObject ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromInternalHomToTensorProductWithDualObject
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{IsomorphismFromInternalHomToTensorProductWithDualObject}(a, b)\).
‣ AddIsomorphismFromTensorProductWithDualObjectToInternalHom ( C, F ) | ( operation ) |
‣ AddIsomorphismFromTensorProductWithDualObjectToInternalHom ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromTensorProductWithDualObjectToInternalHom
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{IsomorphismFromTensorProductWithDualObjectToInternalHom}(a, b)\).
‣ AddMorphismFromBidual ( C, F ) | ( operation ) |
‣ AddMorphismFromBidual ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismFromBidual
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{MorphismFromBidual}(a)\).
‣ AddMorphismFromBidualWithGivenBidual ( C, F ) | ( operation ) |
‣ AddMorphismFromBidualWithGivenBidual ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismFromBidualWithGivenBidual
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, s ) \mapsto \mathtt{MorphismFromBidualWithGivenBidual}(a, s)\).
‣ AddMorphismFromInternalHomToTensorProduct ( C, F ) | ( operation ) |
‣ AddMorphismFromInternalHomToTensorProduct ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismFromInternalHomToTensorProduct
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{MorphismFromInternalHomToTensorProduct}(a, b)\).
‣ AddMorphismFromInternalHomToTensorProductWithGivenObjects ( C, F ) | ( operation ) |
‣ AddMorphismFromInternalHomToTensorProductWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismFromInternalHomToTensorProductWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, b, r ) \mapsto \mathtt{MorphismFromInternalHomToTensorProductWithGivenObjects}(s, a, b, r)\).
‣ AddRankMorphism ( C, F ) | ( operation ) |
‣ AddRankMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation RankMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{RankMorphism}(a)\).
‣ AddTensorProductInternalHomCompatibilityMorphismInverse ( C, F ) | ( operation ) |
‣ AddTensorProductInternalHomCompatibilityMorphismInverse ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductInternalHomCompatibilityMorphismInverse
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( list ) \mapsto \mathtt{TensorProductInternalHomCompatibilityMorphismInverse}(list)\).
‣ AddTensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects ( C, F ) | ( operation ) |
‣ AddTensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( source, list, range ) \mapsto \mathtt{TensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects}(source, list, range)\).
‣ AddTraceMap ( C, F ) | ( operation ) |
‣ AddTraceMap ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation TraceMap
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( alpha ) \mapsto \mathtt{TraceMap}(alpha)\).
‣ AddCoRankMorphism ( C, F ) | ( operation ) |
‣ AddCoRankMorphism ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation CoRankMorphism
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{CoRankMorphism}(a)\).
‣ AddCoTraceMap ( C, F ) | ( operation ) |
‣ AddCoTraceMap ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation CoTraceMap
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( alpha ) \mapsto \mathtt{CoTraceMap}(alpha)\).
‣ AddCoclosedCoevaluationForCoDual ( C, F ) | ( operation ) |
‣ AddCoclosedCoevaluationForCoDual ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation CoclosedCoevaluationForCoDual
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{CoclosedCoevaluationForCoDual}(a)\).
‣ AddCoclosedCoevaluationForCoDualWithGivenTensorProduct ( C, F ) | ( operation ) |
‣ AddCoclosedCoevaluationForCoDualWithGivenTensorProduct ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation CoclosedCoevaluationForCoDualWithGivenTensorProduct
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, r ) \mapsto \mathtt{CoclosedCoevaluationForCoDualWithGivenTensorProduct}(s, a, r)\).
‣ AddInternalCoHomTensorProductCompatibilityMorphismInverse ( C, F ) | ( operation ) |
‣ AddInternalCoHomTensorProductCompatibilityMorphismInverse ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation InternalCoHomTensorProductCompatibilityMorphismInverse
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( list ) \mapsto \mathtt{InternalCoHomTensorProductCompatibilityMorphismInverse}(list)\).
‣ AddInternalCoHomTensorProductCompatibilityMorphismInverseWithGivenObjects ( C, F ) | ( operation ) |
‣ AddInternalCoHomTensorProductCompatibilityMorphismInverseWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation InternalCoHomTensorProductCompatibilityMorphismInverseWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( source, list, range ) \mapsto \mathtt{InternalCoHomTensorProductCompatibilityMorphismInverseWithGivenObjects}(source, list, range)\).
‣ AddIsomorphismFromInternalCoHomToTensorProductWithCoDualObject ( C, F ) | ( operation ) |
‣ AddIsomorphismFromInternalCoHomToTensorProductWithCoDualObject ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromInternalCoHomToTensorProductWithCoDualObject
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{IsomorphismFromInternalCoHomToTensorProductWithCoDualObject}(a, b)\).
‣ AddIsomorphismFromTensorProductWithCoDualObjectToInternalCoHom ( C, F ) | ( operation ) |
‣ AddIsomorphismFromTensorProductWithCoDualObjectToInternalCoHom ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsomorphismFromTensorProductWithCoDualObjectToInternalCoHom
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{IsomorphismFromTensorProductWithCoDualObjectToInternalCoHom}(a, b)\).
‣ AddMorphismFromTensorProductToInternalCoHom ( C, F ) | ( operation ) |
‣ AddMorphismFromTensorProductToInternalCoHom ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismFromTensorProductToInternalCoHom
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{MorphismFromTensorProductToInternalCoHom}(a, b)\).
‣ AddMorphismFromTensorProductToInternalCoHomWithGivenObjects ( C, F ) | ( operation ) |
‣ AddMorphismFromTensorProductToInternalCoHomWithGivenObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismFromTensorProductToInternalCoHomWithGivenObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, a, b, r ) \mapsto \mathtt{MorphismFromTensorProductToInternalCoHomWithGivenObjects}(s, a, b, r)\).
‣ AddMorphismToCoBidual ( C, F ) | ( operation ) |
‣ AddMorphismToCoBidual ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismToCoBidual
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{MorphismToCoBidual}(a)\).
‣ AddMorphismToCoBidualWithGivenCoBidual ( C, F ) | ( operation ) |
‣ AddMorphismToCoBidualWithGivenCoBidual ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismToCoBidualWithGivenCoBidual
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, r ) \mapsto \mathtt{MorphismToCoBidualWithGivenCoBidual}(a, r)\).
generated by GAPDoc2HTML