Goto Chapter: Top 1 2 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

1 Linear closure of a category
 1.1 GAP Categories
 1.2 Functors
 1.3 Operations

1 Linear closure of a category

1.1 GAP Categories

1.1-1 IsLinearClosureOfACategory
‣ IsLinearClosureOfACategory( C )( property )

Returns: true or false

The property of C being a linear closure of a category.

1.2 Functors

1.2-1 ExtendFunctorToLinearClosureOfSource
‣ ExtendFunctorToLinearClosureOfSource( F, linear_closure, ring_map )( operation )

The arguments are a functor F:C\to D, some linear closure linear_closure of C over some commutative ring S and a function ring_map; where D is a linear category over some commutative ring R. The ring_map is a function that converts an element s in S to an element in R, such that ring_map defines a ring homomorphism. The output is the linear extension functor of F from linear_closure to D.

1.2-2 ExtendFunctorToLinearClosureOfSource
‣ ExtendFunctorToLinearClosureOfSource( F, linear_closure )( operation )

The arguments are a functor F:C\to D, some linear closure linear_closure of C over some commutative ring S; where D is a linear category over S. The output is the linear extension functor of F from linear_closure to D.

1.3 Operations

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 Ind

generated by GAPDoc2HTML