gap> ZZZ := HomalgRingOfIntegersInSingular( ); Z gap> C1 := FreeLeftPresentation( 1, ZZZ );; gap> C2 := FreeLeftPresentation( 2, ZZZ );; gap> h1 := PresentationMorphism( C2, HomalgMatrix( [ [ 0 ], [ 4 ] ], ZZZ ), C1 ); <A morphism in Category of left presentations of Z> gap> h2 := PresentationMorphism( C2, HomalgMatrix( [ [ 0 ], [ 2 ] ], ZZZ ), C1 ); <A morphism in Category of left presentations of Z> gap> v1 := PresentationMorphism( C2, HomalgMatrix( [ [ 2, 0 ], [ 1, 2 ] ], ZZZ ), C2 ); <A morphism in Category of left presentations of Z> gap> v2 := PresentationMorphism( C1, HomalgMatrix( [ [ 4 ] ], ZZZ ), C1 ); <A morphism in Category of left presentations of Z> gap> cocomplex_h1 := CocomplexFromMorphismList( [ h1 ] ); <An object in Cocomplex category of Category of left presentations of Z> gap> cocomplex_h2 := CocomplexFromMorphismList( [ h2 ] ); <An object in Cocomplex category of Category of left presentations of Z> gap> cocomplex_mor := CochainMap( cocomplex_h2, [ v1, v2 ], cocomplex_h1 ); <A morphism in Cocomplex category of Category of left presentations of Z> gap> Zmod := CapCategory( C1 ); Category of left presentations of Z gap> CH0 := CohomologyFunctor( Zmod, 0 ); 0-th cohomology functor of Category of left presentations of Z gap> cmor0 := ApplyFunctor( CH0, cocomplex_mor ); <A morphism in Category of left presentations of Z> gap> Display( UnderlyingMatrix( cmor0 ) ); 2 gap> CH1 := CohomologyFunctor( Zmod, 1 ); 1-th cohomology functor of Category of left presentations of Z gap> cmor1 := ApplyFunctor( CH1, cocomplex_mor ); <A morphism in Category of left presentations of Z> gap> Display( UnderlyingMatrix( cmor1 ) ); 4 gap> ToComplex := CocomplexToComplexFunctor( Zmod ); Cocomplex to complex functor of Category of left presentations of Z gap> complex_mor := ApplyFunctor( ToComplex, cocomplex_mor ); <A morphism in Complex category of Category of left presentations of Z> gap> H0 := HomologyFunctor( Zmod, 0 ); 0-th homology functor of Category of left presentations of Z gap> mor0 := ApplyFunctor( H0, complex_mor ); <A morphism in Category of left presentations of Z> gap> Display( UnderlyingMatrix( mor0 ) ); 2 gap> Hm1 := HomologyFunctor( Zmod, -1 ); -1-th homology functor of Category of left presentations of Z gap> mor1 := ApplyFunctor( Hm1, complex_mor ); <A morphism in Category of left presentations of Z> gap> Display( UnderlyingMatrix( mor1 ) ); 4
gap> QQ := HomalgFieldOfRationalsInSingular( );; gap> R := QQ * "x,y"; Q[x,y] gap> SetRecursionTrapInterval( 10000 ); gap> category := LeftPresentations( R ); Category of left presentations of Q[x,y] gap> S := FreeLeftPresentation( 1, R );; gap> object_func := function( i ) return S; end; function( i ) ... end gap> morphism_func := function( i ) return IdentityMorphism( S ); end; function( i ) ... end gap> C0 := ZFunctorObjectExtendedByInitialAndIdentity( object_func, morphism_func, category, 0, 4 ); <An object in Functors from integers into Category of left presentations of Q[x,y]> gap> S2 := FreeLeftPresentation( 2, R );; gap> C1 := ZFunctorObjectFromMorphismList( [ InjectionOfCofactorOfDirectSum( [ S2, S ], 1 ) ], 2 ); <An object in Functors from integers into Category of left presentations of Q[x,y]> gap> C1 := ZFunctorObjectExtendedByInitialAndIdentity( C1, 2, 3 ); <An object in Functors from integers into Category of left presentations of Q[x,y]> gap> C2 := ZFunctorObjectFromMorphismList( [ InjectionOfCofactorOfDirectSum( [ S, S ], 1 ) ], 3 ); <An object in Functors from integers into Category of left presentations of Q[x,y]> gap> C2 := ZFunctorObjectExtendedByInitialAndIdentity( C2, 3, 4 ); <An object in Functors from integers into Category of left presentations of Q[x,y]> gap> delta_1_3 := PresentationMorphism( C1[3], HomalgMatrix( [ [ "x^2" ], [ "xy" ], [ "y^3"] ], 3, 1, R ), C0[3] ); <A morphism in Category of left presentations of Q[x,y]> gap> delta_1_2 := PresentationMorphism( C1[2], HomalgMatrix( [ [ "x^2" ], [ "xy" ] ], 2, 1, R ), C0[2] ); <A morphism in Category of left presentations of Q[x,y]> gap> delta1 := ZFunctorMorphism( C1, [ UniversalMorphismFromInitialObject( C0[1] ), UniversalMorphismFromInitialObject( C0[1] ), delta_1_2, delta_1_3 ], 0, C0 ); <A morphism in Functors from integers into Category of left presentations of Q[x,y]> gap> delta1 := ZFunctorMorphismExtendedByInitialAndIdentity( delta1, 0, 3 ); <A morphism in Functors from integers into Category of left presentations of Q[x,y]> gap> delta1 := AsAscendingFilteredMorphism( delta1 ); <A morphism in Ascending filtered object category of Category of left presentations of Q[x,y]> gap> delta_2_3 := PresentationMorphism( C2[3], HomalgMatrix( [ [ "y", "-x", "0" ] ], 1, 3, R ), C1[3] ); <A morphism in Category of left presentations of Q[x,y]> gap> delta_2_4 := PresentationMorphism( C2[4], HomalgMatrix( [ [ "y", "-x", "0" ], [ "0", "y^2", "-x" ] ], 2, 3, R ), C1[4] ); <A morphism in Category of left presentations of Q[x,y]> gap> delta2 := ZFunctorMorphism( C2, [ UniversalMorphismFromInitialObject( C1[2] ), delta_2_3, delta_2_4 ], 2, C1 ); <A morphism in Functors from integers into Category of left presentations of Q[x,y]> gap> delta2 := ZFunctorMorphismExtendedByInitialAndIdentity( delta2, 2, 4 ); <A morphism in Functors from integers into Category of left presentations of Q[x,y]> gap> delta2 := AsAscendingFilteredMorphism( delta2 ); <A morphism in Ascending filtered object category of Category of left presentations of Q[x,y]> gap> SetIsAdditiveCategory( CategoryOfAscendingFilteredObjects( category ), true ); gap> complex := ZFunctorObjectFromMorphismList( [ delta2, delta1 ], -2 ); <An object in Functors from integers into Ascending filtered object category of Category of left presentations of Q[x,y]> gap> complex := AsComplex( complex ); <An object in Complex category of Ascending filtered object category of Category of left presentations of Q[x,y]> gap> LessGenFunctor := FunctorLessGeneratorsLeft( R ); Less generators for Category of left presentations of Q[x,y] gap> s := SpectralSequenceEntryOfAscendingFilteredComplex( complex, 0, 0, 0 ); <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> gap> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); (an empty 0 x 1 matrix) gap> s := SpectralSequenceEntryOfAscendingFilteredComplex( complex, 1, 0, 0 ); <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> gap> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); (an empty 0 x 1 matrix) gap> s := SpectralSequenceEntryOfAscendingFilteredComplex( complex, 2, 0, 0 ); <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> gap> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); (an empty 0 x 1 matrix) gap> s := SpectralSequenceEntryOfAscendingFilteredComplex( complex, 3, 0, 0 ); <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> gap> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); x*y, x^2 gap> s := SpectralSequenceEntryOfAscendingFilteredComplex( complex, 4, 0, 0 ); <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> gap> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); x*y, x^2, y^3 gap> s := SpectralSequenceEntryOfAscendingFilteredComplex( complex, 5, 0, 0 ); <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> gap> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); x*y, x^2, y^3 gap> s := SpectralSequenceDifferentialOfAscendingFilteredComplex( complex, 3, 3, -2 ); <A morphism in Category of left presentations of Q[x,y]> gap> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, s ) ) ); y^3 gap> AscToDescFunctor := AscendingToDescendingFilteredObjectFunctor( category ); Ascending to descending filtered object functor of Category of left presentations of Q[x,y] gap> cocomplex := ZFunctorObjectFromMorphismList( [ ApplyFunctor( AscToDescFunctor, delta2 ), ApplyFunctor( AscToDescFunctor, delta1 ) ], -2 ); <An object in Functors from integers into Descending filtered object category of Category of left presentations of Q[x,y]> gap> SetIsAdditiveCategory( CategoryOfDescendingFilteredObjects( category ), true ); gap> cocomplex := AsCocomplex( cocomplex ); <An object in Cocomplex category of Descending filtered object category of Category of left presentations of Q[x,y]> gap> s := SpectralSequenceEntryOfDescendingFilteredCocomplex( cocomplex, 0, -2, 1 ); <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> gap> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); (an empty 0 x 2 matrix) gap> s := SpectralSequenceEntryOfDescendingFilteredCocomplex( cocomplex, 1, -2, 1 ); <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> gap> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); (an empty 0 x 2 matrix) gap> s := SpectralSequenceEntryOfDescendingFilteredCocomplex( cocomplex, 2, -2, 1 ); <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> gap> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); x,-y gap> s := SpectralSequenceEntryOfDescendingFilteredCocomplex( cocomplex, 3, -2, 1 ); <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> gap> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); (an empty 0 x 0 matrix) gap> s := SpectralSequenceDifferentialOfDescendingFilteredCocomplex( cocomplex, 2, -2, 1 ); <A morphism in Category of left presentations of Q[x,y]> gap> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, s ) ) ); x*y, x^2
generated by GAPDoc2HTML