Goto Chapter: Top 1 2 3 4 5 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

2 Semisimple Categories
 2.1 Introduction
 2.2 Constructors
 2.3 Attributes
 2.4 Operations
 2.5 GAP Categories

2 Semisimple Categories

2.1 Introduction

Let \(k\) be a field and \(I\) be a totally ordered set. We denote the matrix category of \(k\) by \(k\mathrm{-vec}\) (see the package \(\texttt{LinearAlgebraForCAP}\)). The semisimple category \(\bigoplus_{i \in I} k\mathrm{-vec}\) associated to \(k\) and \(I\) is defined as the full subcategory of the product category \(\prod_{i \in I} k\mathrm{-vec}\) generated by those \(I\)-indexed tuples having only finitely many non-zero entries. By \(\chi^i\), we denote the object which is \(1\) at entry \(i\) and \(0\) otherwise. Thus, an arbitrary object in \(\bigoplus_{i \in I} k\mathrm{-vec}\) can be written as \(\oplus_{i \in I}a_i \chi^i\) for non-negative numbers \(a_i\) for which only finitely many are non-zero.

2.2 Constructors

2.2-1 SemisimpleCategory
‣ SemisimpleCategory( k, m, u, s, b, L )( operation )

Returns: a category

The arguments are:

The output is a CAP category modelling \(\bigoplus_{i \in I} k\mathrm{-vec}\), where \(I\) is the set defined by the membership function \(m\). Note that objects in \(I\) are expected to be equipped with operations enlisted in the chapter "Irreducible Objects". Furthermore, this CAP category is a rigid symmetric closed monoidal Abelian category. Its tensor product is defined by the data of the file \(s\), where the boolean \(b\) is true if the associator stored in \(s\) was computed for all triples, and false otherwise (cf. chapter "Associators"). Its braiding and duality comes from the additional structure required for \(I\). Its tensor unit is modelled by \(u\). The three filters of the \(L\) are filters for the resulting category, its objects, and its morphisms. \(L_4\) is the name of the resulting category.

2.2-2 SemisimpleCategory
‣ SemisimpleCategory( k, m, u, s, b )( operation )

Returns: a category

The arguments are:

This function calls SemisimpleCategory on the six arguments [ k, m, u, s, b, [ IsObject, IsObject, IsObject, automatically generated name ] ]

2.2-3 SemisimpleCategoryMorphism
‣ SemisimpleCategoryMorphism( s, L, r )( operation )

Returns: a morphism

The arguments are an object \(s\) in a semisimple category \(\bigoplus_{i \in I} k\mathrm{-vec}\), a list of pairs \(L = [ [ \phi_1, i_1 ], \dots [ \phi_l, i_l ] ]\) where \(\phi_j\) are morphisms in the Matrix Category \(k\mathrm{-vec}\) and \(i_j \in I\), and another object \(r\) in the same semisimple category. The output is a morphism in \(\bigoplus_{i \in I} k\mathrm{-vec}\) from \(s\) to \(r\) whose \(i\)-th component is given by \(\phi_i\). For this morphism to be well defined, there has to be an \(\phi_i\) for every \(i\) in the support of \(s\) and \(r\).

2.2-4 SemisimpleCategoryMorphismSparse
‣ SemisimpleCategoryMorphismSparse( s, L, r )( operation )

Returns: a morphism

The arguments are an object \(s\) in a semisimple category \(\bigoplus_{i \in I} k\mathrm{-vec}\), a list of pairs \(L = [ [ \phi_1, i_1 ], \dots [ \phi_l, i_l ] ]\) where \(\phi_j\) are morphisms in the Matrix Category \(k\mathrm{-vec}\) and \(i_j \in I\), and another object \(r\) in the same semisimple category. The output is a morphism in \(\bigoplus_{i \in I} k\mathrm{-vec}\) from \(s\) to \(r\) whose \(i_j\)-th component is given by \(\phi_{i_j}\) for \(j = 1, \dots l\), and by the zero morphism otherwise.

2.2-5 ComponentInclusionMorphism
‣ ComponentInclusionMorphism( v, j )( operation )

Returns: a morphism

The arguments are an object \(v = \oplus_{i \in I} a_i \chi^{i}\) in a semisimple category \(\bigoplus_{i \in I} k\mathrm{-vec}\), and an object \(j \in I\). The output is the canonical inclusion \(a_j \chi^j \hookrightarrow \oplus_{i \in I} a_i \chi^{i}\) in \(\bigoplus_{i \in I} k\mathrm{-vec}\).

2.2-6 ComponentProjectionMorphism
‣ ComponentProjectionMorphism( v, j )( operation )

Returns: a morphism

The arguments are an object \(v = \oplus_{i \in I} a_i \chi^{i}\) in a semisimple category \(\bigoplus_{i \in I} k\mathrm{-vec}\), and an object \(j \in I\). The output is the canonical projection \(\oplus_{i \in I} a_i \chi^{i} \twoheadrightarrow a_j \chi^j\) in \(\bigoplus_{i \in I} k\mathrm{-vec}\).

2.2-7 SemisimpleCategoryObject
‣ SemisimpleCategoryObject( L, C )( operation )

Returns: an object

The arguments are a list \(L\) and a semisimple category \(C = \bigoplus_{i \in I} k\mathrm{-vec}\). The list \(L\) contains pairs \(L = [ [ a_1, i_1 ], \dots, [ a_l, i_l ] ]\) of non-negative integers \(a_j\) and objects \(i_j \in I\). The output is the object in \(C\) given by \(\oplus_{j=1}^l a_j \chi^{i_j}\).

2.2-8 SemisimpleCategoryObjectConstructorWithFlatList
‣ SemisimpleCategoryObjectConstructorWithFlatList( L, C )( operation )

Returns: an object

The arguments are a list \(L\) and a semisimple category \(C = \bigoplus_{i \in I} k\mathrm{-vec}\). The list \(L\) contains an even number of elements \(L = [ a_1, i_1, \dots, a_l, i_l ]\) of non-negative integers \(a_j\) and objects \(i_j \in I\). The output is the object in \(C\) given by \(\oplus_{j=1}^l a_j \chi^{i_j}\).

2.3 Attributes

2.3-1 MembershipFunctionForSemisimpleCategory
‣ MembershipFunctionForSemisimpleCategory( C )( attribute )

Returns: a function

The argument is a semisimple category \(C = \bigoplus_{i \in I} k\mathrm{-vec}\). The output is its underlying membership function \(m\) for \(I\).

2.3-2 UnderlyingCategoryForSemisimpleCategory
‣ UnderlyingCategoryForSemisimpleCategory( C )( attribute )

Returns: a category

The argument is a semisimple category \(C = \bigoplus_{i \in I} k\mathrm{-vec}\). The output is its underlying category \(k\mathrm{-vec}\).

2.3-3 UnderlyingFieldForHomalgForSemisimpleCategory
‣ UnderlyingFieldForHomalgForSemisimpleCategory( C )( attribute )

Returns: a homalg field

The argument is a semisimple category \(C = \bigoplus_{i \in I} k\mathrm{-vec}\). The output is its underlying field \(k\).

2.3-4 GivenObjectFilterForSemisimpleCategory
‣ GivenObjectFilterForSemisimpleCategory( C )( attribute )

Returns: a filter

The argument is a semisimple category \(C = \bigoplus_{i \in I} k\mathrm{-vec}\). The output is its object filter which could be specified in the constructor of \(C\).

2.3-5 GivenMorphismFilterForSemisimpleCategory
‣ GivenMorphismFilterForSemisimpleCategory( C )( attribute )

Returns: a filter

The argument is a semisimple category \(C = \bigoplus_{i \in I} k\mathrm{-vec}\). The output is its morphism filter which could be specified in the constructor of \(C\).

2.3-6 SemisimpleCategoryMorphismList
‣ SemisimpleCategoryMorphismList( alpha )( attribute )

Returns: a list

The argument is a morphism \(\alpha = ( \alpha_i )_{i \in I}\) in a semisimple category \(\bigoplus_{i \in I} k\mathrm{-vec}\). The output is the list of pairs \([ [ \alpha_{i_1}, i_1 ], \dots, [ \alpha_{i_l}, i_l ] ]\) where \(i_j\) ranges through the support of the source and range of \(\alpha\).

2.3-7 UnderlyingFieldForHomalg
‣ UnderlyingFieldForHomalg( alpha )( attribute )

Returns: a homalg field

The argument is a morphism \(\alpha = ( \alpha_i )_{i \in I}\) in a semisimple category \(\bigoplus_{i \in I} k\mathrm{-vec}\). The output is the homalg field \(k\).

2.3-8 SemisimpleCategoryObjectList
‣ SemisimpleCategoryObjectList( v )( attribute )

Returns: a list

The argument is an object \(v = \oplus_{j=1}^l a_j \chi^{i_j}\) in a semisimple category. The output is the list \([ [ a_1, i_1 ], \dots [ a_l, i_l ] ]\).

2.3-9 SemisimpleCategoryObjectListWithActualObjects
‣ SemisimpleCategoryObjectListWithActualObjects( v )( attribute )

Returns: a list

The argument is an object \(v = \oplus_{j=1}^l a_j \chi^{i_j}\) in a semisimple category. The output is the list \([ [ a_1, \chi^{i_1} ], \dots [ a_l, \chi^{i_l} ] ]\).

2.3-10 Support
‣ Support( v )( attribute )

Returns: a list

The argument is an object \(v = \oplus_{j=1}^l a_j \chi^{i_j}\) in a semisimple category. The output is the list \([ i_1, \dots, i_l ]\).

2.3-11 UnderlyingFieldForHomalg
‣ UnderlyingFieldForHomalg( v )( attribute )

Returns: a homalg field

The argument is an object \(v = \oplus_{j=1}^l a_j \chi^{i_j}\) in a semisimple category \(\bigoplus_{i \in I} k\mathrm{-vec}\). The output is the homalg field \(k\).

2.3-12 Dimension
‣ Dimension( v )( attribute )

Returns: an integer

The argument is an object \(v = \oplus_{j=1}^l a_j \chi^{i_j}\) in a semisimple category \(\bigoplus_{i \in I} k\mathrm{-vec}\). The output is the integer \(\sum_{j=1}^l a_j \cdot \mathrm{dim}( i_j )\). This functions works under the assumption that there is a notion of dimension on the objects in \(I\).

2.4 Operations

2.4-1 Component
‣ Component( alpha, i )( operation )

Returns: a vector space morphism

The argument is a morphism \(\alpha = ( \alpha_i )_{i \in I}\) in a semisimple category \(\bigoplus_{i \in I} k\mathrm{-vec}\) and an object \(i \in I\). The output is \(\alpha_i\).

2.4-2 NormalizeSemisimpleCategoryObjectList
‣ NormalizeSemisimpleCategoryObjectList( L )( operation )

Returns: a list

The argument is a list \(L = [ [ a_1, i_1 ], \dots, [ a_l, i_l ] ]\) of non-negative integers \(a_j\) and objects \(i_j \in I\), where \(I\) correspond to irreducible objects in a semisimple category \(\bigoplus_{i \in I} k\mathrm{-vec}\). The output is again a list of pairs consisting of integers an elements in \(I\), but with the following normalization:

2.4-3 Multiplicity
‣ Multiplicity( v, i )( operation )

Returns: an integer

The arguments are an object \(v = \oplus_{j=1}^l a_j \chi^{i_j}\) in a semisimple category \(\bigoplus_{i \in I} k\mathrm{-vec}\), and an element \(i \in I\). The output is the integer \(a_i\).

2.4-4 Component
‣ Component( v, i )( operation )

Returns: a vector space object

The arguments are an object \(v = \oplus_{j=1}^l a_j \chi^{i_j}\) in a semisimple category \(\bigoplus_{i \in I} k\mathrm{-vec}\), and an element \(i \in I\). The output is the \(k\)-vector space object \(k^{a_i}\) in Cap's Matrix Category.

2.4-5 TestPentagonIdentity
‣ TestPentagonIdentity( v_1, v_2, v_3, v_4 )( operation )

Returns: a boolean

This is a debug operation. The arguments are 4 objects \(v_1, v_2, v_3, v_4\) in a category. The output is true if the pentagon identity holds for those 4 objects, false otherwise.

2.4-6 TestPentagonIdentityForAllQuadruplesInList
‣ TestPentagonIdentityForAllQuadruplesInList( L )( operation )

Returns: a boolean

This is a debug operation. The argument is a list \(L\) consisting of quadruples of objects in a semisimple category \(\bigoplus_{i \in I} k\mathrm{-vec}\). The output is true if the pentagon identity holds for all those quadruples, false otherwise.

2.4-7 TestBraidingCompatability
‣ TestBraidingCompatability( v_1, v_2, v_3 )( operation )

Returns: a boolean

This is a debug operation. The arguments are 3 objects \(v_1, v_2, v_3\) in a semisimple category \(\bigoplus_{i \in I} k\mathrm{-vec}\). The output is true if the braiding compatabilities with the associator hold, false otherwise.

2.4-8 TestBraidingCompatabilityForAllTriplesInList
‣ TestBraidingCompatabilityForAllTriplesInList( L )( operation )

Returns: a boolean

This is a debug operation. The argument is a list \(L\) consisting of triples of objects in a semisimple category \(\bigoplus_{i \in I} k\mathrm{-vec}\). The output is true if the braiding compatabilities with the associator hold for all those triples false otherwise.

2.4-9 TestZigZagIdentitiesForDual
‣ TestZigZagIdentitiesForDual( v )( operation )

Returns: a boolean

This is a debug operation. The argument is an object \(v\) in a semisimple category \(\bigoplus_{i \in I} k\mathrm{-vec}\). The output is true if the zig zag identity for duals hold, false otherwise.

2.4-10 TestZigZagIdentitiesForDualForAllObjectsInList
‣ TestZigZagIdentitiesForDualForAllObjectsInList( L )( operation )

Returns: a boolean

This is a debug operation. The argument is a list \(L\) consisting of objects in a semisimple category \(\bigoplus_{i \in I} k\mathrm{-vec}\). The output is true if the zig zag identity for duals hold for all those objects, false otherwise.

2.5 GAP Categories

2.5-1 IsSemisimpleCategoryMorphism
‣ IsSemisimpleCategoryMorphism( object )( filter )

Returns: true or false

The GAP category of morphisms in a semisimple category.

2.5-2 IsSemisimpleCategoryObject
‣ IsSemisimpleCategoryObject( object )( filter )

Returns: true or false

The GAP category of objects in a semisimple category.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 Ind

generated by GAPDoc2HTML