Goto Chapter: Top 1 2 3 4 5 6 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

4 The initial category
 4.1 Constructor
 4.2 GAP Categories

4 The initial category

4.1 Constructor

4.1-1 InitialCategory
‣ InitialCategory( )( function )

Construct a initial category.

gap> I := InitialCategory( );
InitialCategory( )
gap> IsInitialCategory( I );
true
gap> Display( I );
A CAP category with name InitialCategory( ):

5 primitive operations were used to derive 13 operations for this category \
which not yet algorithmically
* IsEquippedWithHomomorphismStructure
and furthermore mathematically
* IsInitialCategory
gap> OI := Opposite( I );
Opposite( InitialCategory( ) )
gap> IsInitialCategory( OI );
true
gap> Display( OI );
A CAP category with name Opposite( InitialCategory( ) ):

17 primitive operations were used to derive 17 operations for this category \
which not yet algorithmically
* IsEquippedWithHomomorphismStructure
and furthermore mathematically
* IsInitialCategory

4.2 GAP Categories

4.2-1 IsInitialCapCategory
‣ IsInitialCapCategory( T )( filter )

Returns: true or false

The GAP type of an initial category.

4.2-2 IsObjectInInitialCapCategory
‣ IsObjectInInitialCapCategory( T )( filter )

Returns: true or false

The GAP type of an object in an initial category.

4.2-3 IsMorphismInInitialCapCategory
‣ IsMorphismInInitialCapCategory( T )( filter )

Returns: true or false

The GAP type of a morphism in an initial category.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 Ind

generated by GAPDoc2HTML