‣ DataTables ( C ) | ( attribute ) |
Returns: a pair of lists
The data tables used to create the category C. It might differ from the "normalized" output of DataTablesOfCategory
( C ).
‣ SetOfObjects ( C ) | ( attribute ) |
Returns: a list
The finite set of objects of the category C created from data tables.
‣ SetOfMorphisms ( C ) | ( attribute ) |
Returns: a list
The finite set of morphisms of the category C created from data tables.
‣ SetOfGeneratingMorphisms ( C ) | ( attribute ) |
Returns: a list
The finite set of morphisms generating the category C created from data tables.
‣ Size ( C ) | ( attribute ) |
Returns: a nonnegative integer
The number of morphisms in the category C created from data tables.
‣ OppositeCategoryFromDataTables ( C ) | ( attribute ) |
Returns: a CAP category
The opposite category of the category C defined by nerve data.
‣ CategoryFromDataTables ( str, V, data_tables, indices_of_generating_morphisms, relations, labels ) | ( operation ) |
Returns: a CAP category
Construct a V-enriched category with name str from the given data_tables (of a f.p. category C or a category C created from nerve data).
gap> LoadPackage( "Algebroids" ); true gap> Delta1 := SimplicialCategoryTruncatedInDegree( 1 ); FreeCategory( RightQuiver( "Delta(C0,C1)[id:C1->C0,s:C0->C1,t:C0->C1]" ) ) / [ s*id = C0, t*id = C0 ] gap> Size( Delta1 ); 7 gap> C := CategoryFromDataTables( Delta1 ); FreeCategory( RightQuiver( "Delta(C0,C1)[id:C1->C0,s:C0->C1,t:C0->C1]" ) ) / [ s*id = C0, t*id = C0 ] gap> Size( C ); 7 gap> NerveTruncatedInDegree2Data( C ) = NerveTruncatedInDegree2Data( Delta1 ); true gap> Display( C ); A CAP category with name FreeCategory( RightQuiver( "Delta(C0,C1)[id:C1->C0,s:C0->C1,t:C0->C1]" ) ) / [ s*id = C0, t*id = C0 ]: 16 primitive operations were used to derive 50 operations for this category which algorithmically * IsEquippedWithHomomorphismStructure gap> C0 := CreateObject( C, 0 ); <(C0)> gap> IsWellDefined( C0 ); true gap> C1 := 1 / C; <(C1)> gap> IsWellDefined( C1 ); true gap> IsWellDefined( 2 / C ); false gap> idC0 := CreateMorphism( C0, 0, C0 ); (C0)-[(0)]->(C0) gap> CreateMorphism( C, 0 ) = idC0; true gap> IsOne( idC0 ); true gap> id := CreateMorphism( C, 1 ); (C1)-[(id)]->(C0) gap> s := CreateMorphism( C, 2 ); (C0)-[(s)]->(C1) gap> t := CreateMorphism( C, 3 ); (C0)-[(t)]->(C1) gap> idC1 := CreateMorphism( C, 4 ); (C1)-[(4)]->(C1) gap> IsOne( idC1 ); true gap> sigma := CreateMorphism( C, 5 ); (C1)-[(5)]->(C1) gap> IsEndomorphism( sigma ); true gap> IsOne( sigma ); false gap> tau := CreateMorphism( C, 6 ); (C1)-[(6)]->(C1) gap> IsEndomorphism( tau ); true gap> IsOne( tau ); false gap> IsWellDefined( CreateMorphism( C1, 7, C1 ) ); false gap> PreCompose( s, id ) = idC0; true gap> PreCompose( t, id ) = idC0; true gap> PreCompose( id, s ) = sigma; true gap> PreCompose( id, t ) = tau; true gap> HomStructure( C0, C0 ); |1| gap> HomStructure( C1, C1 ); |3| gap> HomStructure( C0, C1 ); |2| gap> HomStructure( C1, C0 ); |1| gap> Display( HomStructure( s ) ); { 0 } ⱶ[ 0 ]→ { 0, 1 } gap> Display( HomStructure( t ) ); { 0 } ⱶ[ 1 ]→ { 0, 1 } gap> HomStructure( Source( s ), Range( s ), HomStructure( s ) ) = s; true gap> HomStructure( Source( t ), Range( t ), HomStructure( t ) ) = t; true gap> Display( HomStructure( s, t ) ); { 0 } ⱶ[ 1 ]→ { 0, 1 } gap> Display( HomStructure( t, s ) ); { 0 } ⱶ[ 0 ]→ { 0, 1 } gap> Display( HomStructure( sigma, tau ) ); { 0, 1, 2 } ⱶ[ 2, 2, 2 ]→ { 0, 1, 2 } gap> Display( HomStructure( > PreCompose( Delta1.id, Delta1.s ), > PreCompose( Delta1.id, Delta1.t ) ) ); { 0, 1, 2 } ⱶ[ 2, 2, 2 ]→ { 0, 1, 2 } gap> Display( HomStructure( tau, sigma ) ); { 0, 1, 2 } ⱶ[ 1, 1, 1 ]→ { 0, 1, 2 } gap> Display( HomStructure( > PreCompose( Delta1.id, Delta1.t ), > PreCompose( Delta1.id, Delta1.s ) ) ); { 0, 1, 2 } ⱶ[ 1, 1, 1 ]→ { 0, 1, 2 } gap> Display( HomStructure( tau, idC1 ) ); { 0, 1, 2 } ⱶ[ 2, 1, 2 ]→ { 0, 1, 2 } gap> Display( HomStructure( idC1, idC1 ) ); { 0, 1, 2 } ⱶ[ 0, 1, 2 ]→ { 0, 1, 2 } gap> C_op := OppositeCategoryFromDataTables( C ); Opposite( FreeCategory( RightQuiver( "Delta(C0,C1)[id:C1->C0,s:C0->C1,t:C0->C1]" ) ) / [ s*id = C0, t*id = C0 ] ) gap> IsIdenticalObj( OppositeCategoryFromDataTables( C_op ), C ); true
‣ CategoryFromDataTables ( C ) | ( attribute ) |
‣ CategoryFromDataTables ( C ) | ( attribute ) |
‣ CreateObject ( C, o ) | ( operation ) |
Returns: a CAP category
Construct the o-th object in the category C created from data tables.
‣ CreateMorphism ( C, m ) | ( operation ) |
‣ CreateMorphism ( source, m, range ) | ( operation ) |
‣ CreateMorphism ( C, m ) | ( operation ) |
‣ CreateMorphism ( source, m, range ) | ( operation ) |
Returns: a CAP category
Construct the m-th morphism source\(\to\)range in the category C created from data tables.
Construct the m-th morphism source\(\to\)range in the category C created from nerve data.
‣ IsCategoryFromDataTables ( arg ) | ( filter ) |
Returns: true
or false
The GAP category of categories from data tables.
‣ IsCellInCategoryFromDataTables ( arg ) | ( filter ) |
Returns: true
or false
The GAP category of cells in a category from data tables.
‣ IsObjectInCategoryFromDataTables ( arg ) | ( filter ) |
Returns: true
or false
The GAP category of objects in a category from data tables.
‣ IsMorphismInCategoryFromDataTables ( arg ) | ( filter ) |
Returns: true
or false
The GAP category of morphisms in a category from data tables.
generated by GAPDoc2HTML