CAP, machine learning and string theory

Martin Bies

Institut für theoretische Physik, 69120 Heidelberg, Germany

CAP days 2018

Overview

Overview

Outline

- Brief introduction to string theory
- Search for our universe: How can CAP help?
- Exploring the landscape with CAP and machine learning

Overview

Outline

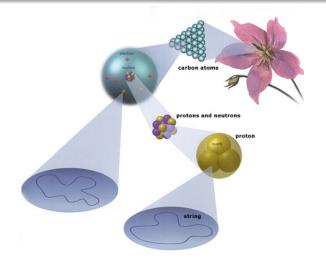
- Brief introduction to string theory
- Search for our universe: How can CAP help?
- Exploring the landscape with CAP and machine learning

Presentation based on work with

- T. Weigand and C. Mayrhofer 1706.04616, 1706.08528, 1802.08860
- M. Barakat, S. Gutsche, S. Posur, K. M. Saleh: 5 CAP-packages on https://github.com/HereAround
- K. Veschgini in progress

2/31

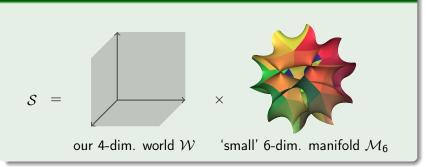
Motivation: What if elementary particles were strings?



from 'A Layman's Guide To String Theory'

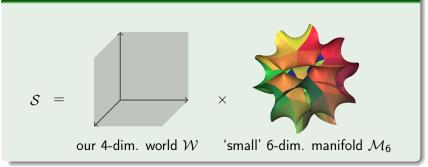
Consequence: Universe is 10-dimensional!

Cartoon



Consequence: Universe is 10-dimensional!

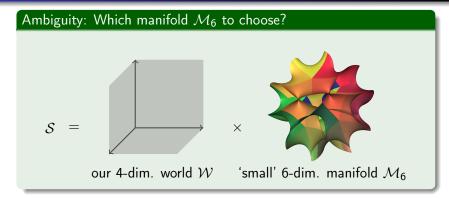
Cartoon



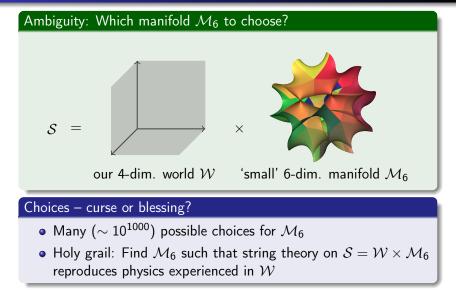
Summary

- Universe: 10 dimensional manifold ${\cal S}$
- Compactification: $\mathcal{S} = \mathcal{W} \times \mathcal{M}_6$ and \mathcal{M}_6 compact

Consequence II: String theory has many solutions!



Consequence II: String theory has many solutions!

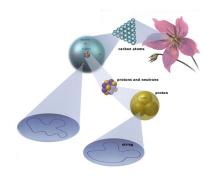


Brief introduction to string theory Search for our universe: How can CAP help?

Search for our universe: How can CAP help? Exploring the landscape with CAP and machine learning

Status of search

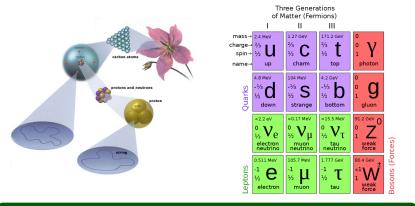
A quantity to count: Generations of fundamental particles



of Matter (Fermions) mass→ 2.4 MeV 1.27 GeV 171.2 GeV charge→ 2/ 2/3 2/3 1/2 1/2 spinphoton nameup charm top 4.8 MeV 4.2 GeV 104 MeV -43 h -^{1/3} S 0 Quarks down strange bottom gluon 91.2 GeV <2.2 eV <0.17 MeV <15.5 MeV 1/2 30sons (Forces) weak force electron neutrino tau neutrino neutrino 0.511 MeV 105.7 MeV 1 777 GeV eptons -1 1/2 τ 1/, weak electron tau muon

Three Generations

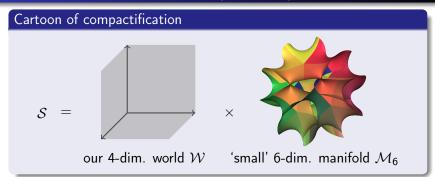
A quantity to count: Generations of fundamental particles



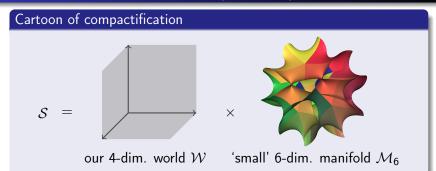
Strategy

Count number of generations of (massless) particles!

How to count generations of (massless) particles?



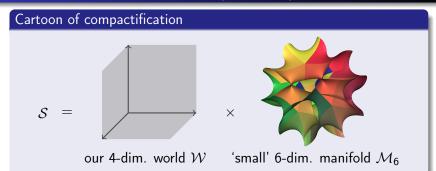
How to count generations of (massless) particles?



Technicalities in a nutshell

 \bullet Quantum particles $\widehat{=} \ensuremath{\mathbb{C}}\xspace$ -valued functions on $\ensuremath{\mathcal{S}}\xspace$

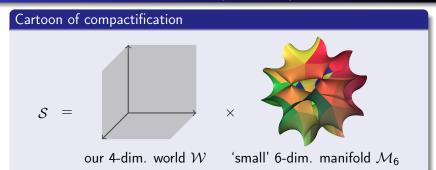
How to count generations of (massless) particles?



Technicalities in a nutshell

- \bullet Quantum particles $\widehat{=} \ensuremath{\mathbb{C}}\xspace$ valued functions on $\ensuremath{\mathcal{S}}\xspace$
- \Rightarrow How many suitable \mathbb{C} -valued functions exist on \mathcal{M}_6 ?

How to count generations of (massless) particles?



Technicalities in a nutshell

- \bullet Quantum particles $\widehat{=} \ensuremath{\mathbb{C}}\xspace$ -valued functions on $\ensuremath{\mathcal{S}}\xspace$
- \Rightarrow How many suitable \mathbb{C} -valued functions exist on \mathcal{M}_6 ?
- \Rightarrow Eventually: Compute sheaf cohomologies on \mathcal{M}_{6} 0403166, 0808.3621, 1106.4804, 1706.04616, 1802.08860 and many others

Brief introduction to string theory

Search for our universe: How can CAP help? Exploring the landscape with CAP and machine learning

Questions so far?

Search for our universe: How can CAP help?

Search for our universe: How can CAP help?

Strategy

Martin Bies CAP, machine learning and string theory 10 / 31

Search for our universe: How can CAP help?

Strategy

Search for our universe: How can CAP help?

Strategy

- ${\ensuremath{ @ { O f} }}$ Find computer models for $\mathfrak{Coh}(\mathcal{M}_6)$

Search for our universe: How can CAP help?

Strategy

- **2** Find computer models for $\mathfrak{Coh}(\mathcal{M}_6)$
- Implement these computer models via CAP

Search for our universe: How can CAP help?

Strategy

- **2** Find computer models for $\mathfrak{Coh}(\mathcal{M}_6)$
- Implement these computer models via CAP
- Employ these categories to compute sheaf cohomologies

Simple choice for \mathcal{M}_6 – subvarieties of toric varieties

Simple choice for \mathcal{M}_6 – subvarieties of toric varieties

Remarks

- In this talk, all toric varieties are smooth and complete
- Background on toric varieties in book by Cox, Little, Schenk

Simple choice for \mathcal{M}_6 – subvarieties of toric varieties

Remarks

- In this talk, all toric varieties are smooth and complete
- Background on toric varieties in book by Cox, Little, Schenk

Revision: Defining data of toric varieties

• Cox ring
$$S = \mathbb{Q}[x_1, \ldots, x_n]$$

- Homomorphism of monoids deg: Mons $(S) o \mathbb{Z}^n$
- Stanley-Reissner ideal $I_{\mathsf{SR}} \subseteq S$

Simple choice for \mathcal{M}_6 – subvarieties of toric varieties

Remarks

- In this talk, all toric varieties are smooth and complete
- Background on toric varieties in book by Cox, Little, Schenk

Revision: Defining data of toric varieties

- Cox ring $S = \mathbb{Q}[x_1, \ldots, x_n]$
- Homomorphism of monoids deg: Mons $(S) o \mathbb{Z}^n$
- Stanley-Reissner ideal $I_{\mathsf{SR}} \subseteq S$

Example: $\mathbb{P}^2_{\mathbb{O}}$

- $S = \mathbb{Q}[x_1, x_2, x_3]$
- deg: $S \to \mathbb{Z}$ with deg $(x_1) = \deg(x_2) = \deg(x_3) = 1$

•
$$I_{\mathsf{SR}} = \langle x_1 \cdot x_2 \cdot x_3 \rangle$$

Coherent sheaves on a toric variety X_{Σ} (with Cox ring S)

Coherent sheaves on a toric variety X_{Σ} (with Cox ring S)

Sheafification functor

- S-fpgrmod: category of finitely presented graded S-modules
- $\mathfrak{Coh}X_{\Sigma}$: category of coherent sheaves on X_{Σ}
- \Rightarrow There exists the sheafification functor

 $\widetilde{}$: S-fpgrmod $\rightarrow \mathfrak{Coh}X_{\Sigma}$, $M \mapsto \widetilde{M}$

Coherent sheaves on a toric variety X_{Σ} (with Cox ring S)

Sheafification functor

- S-fpgrmod: category of finitely presented graded S-modules
- $\mathfrak{Coh}X_{\Sigma}$: category of coherent sheaves on X_{Σ}
- \Rightarrow There exists the sheafification functor

$$\widetilde{\Sigma}: S ext{-fpgrmod} o \mathfrak{Coh} X_{\Sigma} \ , \ M \mapsto \widetilde{M}$$

Computer models for coherent sheaves

- \bullet The category S-fpgrmod can be handled with CAP
- \Rightarrow S-fpgrmod can serve as computer models for coherent sheaves

 $1003.1943,\ 1202.3337,\ 1210.1425,\ 1212.4068,\ 1409.2028,\ 1409.6100$

Coherent sheaves on a toric variety X_{Σ} (with Cox ring S)

Sheafification functor

- S-fpgrmod: category of finitely presented graded S-modules
- $\mathfrak{Coh}X_{\Sigma}$: category of coherent sheaves on X_{Σ}
- \Rightarrow There exists the sheafification functor

$$\widetilde{\mathcal{S}}: S ext{-fpgrmod} o \mathfrak{Coh} X_{\Sigma} \ , \ M \mapsto \widetilde{M}$$

Computer models for coherent sheaves

- \bullet The category S-fpgrmod can be handled with CAP
- $\Rightarrow~S\text{-}\mathrm{fpgrmod}$ can serve as computer models for coherent sheaves

 $1003.1943,\ 1202.3337,\ 1210.1425,\ 1212.4068,\ 1409.2028,\ 1409.6100$

Strategy of implementation

- Implement category of projective graded S-modules
- ${f 2}$ 'Derive' $S\operatorname{-fpgrmod}$ as Freyd category 1712.03492 and references therein

S-fpgrmod 1 – Category of projective graded S-modules

S-fpgrmod 1 – Category of projective graded S-modules

Input from toric variety

- Polynomial ring $S = \mathbb{Q}[x_1, \ldots, x_n]$
- Homomorphism of monoids deg: Mon $(S) o \mathbb{Z}^n$

S-fpgrmod 1 – Category of projective graded S-modules

Input from toric variety

- Polynomial ring $S = \mathbb{Q}[x_1, \ldots, x_n]$
- Homomorphism of monoids deg: $\mathsf{Mon}\,(S) o \mathbb{Z}^n$

Definition

- $S_e \subseteq S$: subgroup of homogeneous polynomials of degree e
- S(d): graded ring with $S(d)_e = S_{e+d}$

S-fpgrmod 1 – Category of projective graded S-modules

Input from toric variety

- Polynomial ring $S = \mathbb{Q}[x_1, \ldots, x_n]$
- Homomorphism of monoids deg: ${\sf Mon}\,(S) o \mathbb{Z}^n$

Definition

- $S_e \subseteq S$: subgroup of homogeneous polynomials of degree e
- S(d): graded ring with $S(d)_e = S_{e+d}$

Objects: $M = \bigoplus_{d \in I} S(d)$

• $I \subseteq \mathbb{Z}^n$ an indexing set

• graded, i.e.
$$S_i M_j \subseteq M_{i+j}$$

S-fpgrmod 1 – Category of projective graded S-modules

Input from toric variety

- Polynomial ring $S = \mathbb{Q}[x_1, \dots, x_n]$
- Homomorphism of monoids deg: ${\sf Mon}\,(S) o \mathbb{Z}^n$

Definition

- $S_e \subseteq S$: subgroup of homogeneous polynomials of degree e
- S(d): graded ring with $S(d)_e = S_{e+d}$

Objects: $M = \bigoplus_{d \in I} S(d)$

• $I \subseteq \mathbb{Z}^n$ an indexing set

• graded, i.e.
$$S_i M_j \subseteq M_{i+j}$$

Morphisms:

morphisms of graded modules

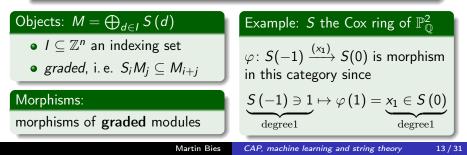
S-fpgrmod 1 – Category of projective graded S-modules

Input from toric variety

- Polynomial ring $S = \mathbb{Q}[x_1, \ldots, x_n]$
- Homomorphism of monoids deg: ${\sf Mon}\,(S) o \mathbb{Z}^n$

Definition

- $S_e \subseteq S$: subgroup of homogeneous polynomials of degree e
- S(d): graded ring with $S(d)_e = S_{e+d}$



S-fpgrmod 2: Objects

General rule:

Objects in S-fpgrmod $\widehat{=}$ morphisms of projective graded S-modules

S-fpgrmod 2: Objects

General rule:

Objects in S-fpgrmod $\widehat{=}$ morphisms of projective graded S-modules

Example on $\mathbb{P}^2_{\mathbb{Q}}$: $S = \mathbb{Q}[x_1, x_2, x_3]$, deg $(x_i) = 1$

 $\mathit{M}_arphi \equiv \mathrm{coker}\left(arphi
ight)$ and $\mathit{M}_\psi \equiv \mathrm{coker}\left(\psi
ight)$ are abstractly described by

$$\psi \colon S(-2)^{\oplus 3} \xrightarrow{R} S(-1)^{\oplus 3}, \quad R = \begin{pmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{pmatrix}, \quad \varphi \colon 0 \to S(0)$$

S-fpgrmod 2: Objects

General rule:

Objects in S-fpgrmod $\widehat{=}$ morphisms of projective graded S-modules

Example on $\mathbb{P}^2_{\mathbb{Q}}$: $S = \mathbb{Q}[x_1, x_2, x_3]$, deg $(x_i) = 1$

 $\mathit{M}_{arphi}\equiv\operatorname{coker}\left(arphi
ight)$ and $\mathit{M}_{\psi}\equiv\operatorname{coker}\left(\psi
ight)$ are abstractly described by

$$\psi \colon S(-2)^{\oplus 3} \xrightarrow{R} S(-1)^{\oplus 3}, \quad R = \begin{pmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{pmatrix}, \quad \varphi \colon 0 \to S(0)$$

Notation

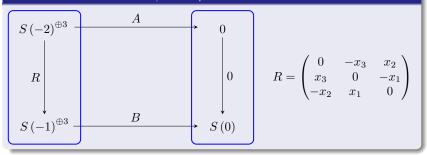
$$\begin{array}{c}
S(-2)^{\oplus 3} \\
R \\
S(-1)^{\oplus 3}
\end{array}$$

$$\begin{array}{c}
0 \\
\downarrow 0 \\
S(0)
\end{array}$$

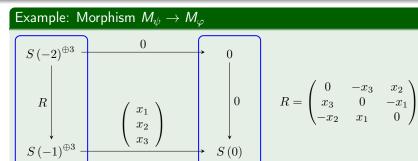
14/31

S-fpgrmod 3: Morphisms

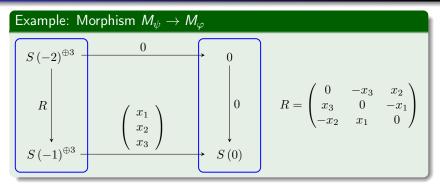
Definition: Morphism $M_{\psi} \rightarrow M_{\varphi}$ is commutative diagram



S-fpgrmod 3: Morphisms



S-fpgrmod 3: Morphisms



Implementation for CAP at https://github.com/HereAround:

- 'CAPCategoryOfProjectiveGradedModules'
- 'CAPPresentationCategory'
- 'PresentationByProjectiveGradedModules'

Computing H^0 – general idea

Computing H^0 – general idea

Definition

$$H^{0}(X_{\Sigma},\mathcal{F}) \coloneqq \Gamma(\mathscr{H}om_{\mathcal{O}_{X}}(\mathcal{O}_{X},\mathcal{F}))$$

Computing H^0 – general idea

Definition

$$H^{0}(X_{\Sigma},\mathcal{F}) \coloneqq \Gamma(\mathscr{H}_{OM}\mathcal{O}_{X}(\mathcal{O}_{X},\mathcal{F}))$$

Idea

- M such that $\widetilde{M} \cong \mathcal{O}_X$
- F such that $\widetilde{F} \cong \mathcal{F}$

$$\Rightarrow \Gamma\left(\mathscr{H}_{om}_{\mathcal{O}_{X}}\left(\mathcal{O}_{X},\mathcal{F}\right)\right) \stackrel{?}{=} \operatorname{Hom}_{\mathcal{S}}\left(M,F\right)_{0}$$

Computing H^0 – general idea

Definition

$$H^{0}(X_{\Sigma},\mathcal{F}) \coloneqq \Gamma(\mathscr{H}_{OM}\mathcal{O}_{X}(\mathcal{O}_{X},\mathcal{F}))$$

Idea

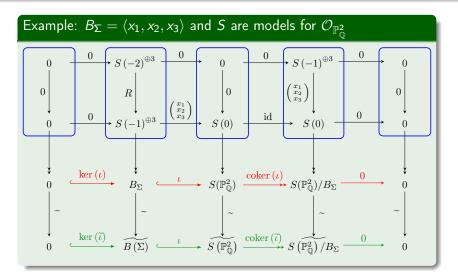
- M such that $\widetilde{M} \cong \mathcal{O}_X$
- F such that $\widetilde{F} \cong \mathcal{F}$

$$\Rightarrow \Gamma\left(\mathscr{H}_{om}_{\mathcal{O}_{X}}\left(\mathcal{O}_{X},\mathcal{F}\right)\right) \stackrel{?}{=} \operatorname{Hom}_{\mathcal{S}}\left(M,F\right)_{0}$$

Careful!

In general wrong – have to choose M carefully

Computing H^0 – different models for the structure sheaf



Computing H^0 – is B_{Σ} or S better?

Task

• On
$$\mathbb{P}^2_{\mathbb{Q}}$$
, $F = B_{\Sigma} = \langle x_1, x_2, x_3 \rangle$ satisfies $\widetilde{F} \cong \mathcal{O}_{\mathbb{P}^2_{\mathbb{Q}}}$

$$\Rightarrow H^0(\mathbb{P}^2_{\mathbb{Q}},\widetilde{F})\cong \mathbb{Q}^1$$

 \Rightarrow Task: Reproduce this from Hom_S $(X, F)_0$ with $X \in \{S, B_{\Sigma}\}$

Computing H^0 – is B_{Σ} or S better?

Task

• On
$$\mathbb{P}^2_{\mathbb{Q}}$$
, $F = B_{\Sigma} = \langle x_1, x_2, x_3 \rangle$ satisfies $\widetilde{F} \cong \mathcal{O}_{\mathbb{P}^2_{\mathbb{Q}}}$

$$\Rightarrow H^0(\mathbb{P}^2_{\mathbb{Q}},\widetilde{F})\cong \mathbb{Q}^1$$

 \Rightarrow Task: Reproduce this from Hom_S $(X, F)_0$ with $X \in \{S, B_{\Sigma}\}$

Try 1: X = S

 $\operatorname{Hom}_{S}(S,F)_{0} \cong \mathbb{Q}^{0}$ – wrong result!

Computing H^0 – is B_{Σ} or S better?

Task

• On
$$\mathbb{P}^2_{\mathbb{Q}}$$
, $F = B_{\Sigma} = \langle x_1, x_2, x_3 \rangle$ satisfies $\widetilde{F} \cong \mathcal{O}_{\mathbb{P}^2_{\mathbb{Q}}}$

$$\Rightarrow H^0(\mathbb{P}^2_{\mathbb{Q}},\widetilde{F})\cong \mathbb{Q}^1$$

 \Rightarrow Task: Reproduce this from Hom_S $(X, F)_0$ with $X \in \{S, B_{\Sigma}\}$

Try 1: X = S

Hom_S $(S, F)_0 \cong \mathbb{Q}^0$ – wrong result!

Try 2: $X = B_{\Sigma}$

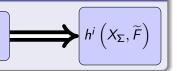
Hom_S $(B_{\Sigma}, F)_0 \cong \mathbb{Q}^1$ – correct result!

Implemented Algorithm

Implemented Algorithm

Input and Output

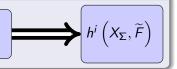
- smooth, complete toric variety X_{Σ}
- $F \in S$ -fpgrmod



Implemented Algorithm

Input and Output

- smooth, complete toric variety X_{Σ}
- $F \in S$ -fpgrmod



Step-by-step (References in two slides)

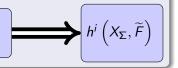
• Use *cohomCalg* to compute $(0 \le k \le \dim_{\mathbb{Q}} (X_{\Sigma}))$

$$V^{k}\left(X_{\Sigma}
ight) := \left\{L \in \operatorname{Pic}\left(X_{\Sigma}
ight) \ , \ h^{k}\left(X_{\Sigma}, L
ight) = 0
ight\}$$

Implemented Algorithm

Input and Output

- smooth, complete toric variety X_{Σ}
- $F \in S$ -fpgrmod



19/31

Step-by-step (References in two slides)

• Use *cohomCalg* to compute $(0 \le k \le \dim_{\mathbb{Q}} (X_{\Sigma}))$

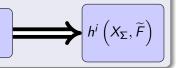
$$V^{k}\left(X_{\Sigma}
ight) \coloneqq \left\{L \in \operatorname{Pic}\left(X_{\Sigma}
ight) \ , \ h^{k}\left(X_{\Sigma},L
ight) = 0
ight\}$$

Germatic Find ideal *I* ⊆ *S* along idea of G. Smith s.t.
 $H^i(X_{\Sigma}, \widetilde{F}) \cong \operatorname{Ext}_S^i(I, F)_0$

Implemented Algorithm

Input and Output

- smooth, complete toric variety X_{Σ}
- $F \in S$ -fpgrmod



19/31

Step-by-step (References in two slides)

• Use *cohomCalg* to compute $(0 \le k \le \dim_{\mathbb{Q}} (X_{\Sigma}))$

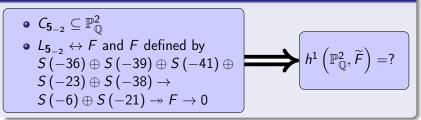
$$V^{k}\left(X_{\Sigma}
ight)\coloneqq\left\{L\in\operatorname{Pic}\left(X_{\Sigma}
ight)\;,\;h^{k}\left(X_{\Sigma},L
ight)=0
ight\}$$

Find ideal *I* ⊆ *S* along idea of G. Smith s.t.
 $H^i(X_{\Sigma}, \widetilde{F}) \cong \operatorname{Ext}_S^i(I, F)_0$

• Compute \mathbb{Q} -dimension of $\operatorname{Ext}_{\mathcal{S}}^{i}(I, F)_{0}$

$SU(5) \times U(1)$ -Tate model from 1706.04616

Input and Output



$SU(5) \times U(1)$ -Tate model from 1706.04616

Input and Output

•
$$C_{5_{-2}} \subseteq \mathbb{P}^2_{\mathbb{Q}}$$

• $L_{5_{-2}} \leftrightarrow F$ and F defined by
 $S(-36) \oplus S(-39) \oplus S(-41) \oplus$
 $S(-23) \oplus S(-38) \rightarrow$
 $S(-6) \oplus S(-21) \twoheadrightarrow F \rightarrow 0$

 $h^1(\mathbb{P}^2_{\mathbb{Q}}, \widetilde{F}) =?$

Apply Algorithm

• Compute vanishing sets via *cohomCalg*: $V^{0}(\mathbb{P}^{2}_{\mathbb{O}}) = (-\infty, -1]_{\mathbb{Z}}, V^{1}(\mathbb{P}^{2}_{\mathbb{O}}) = \mathbb{Z}, V^{2}(\mathbb{P}^{2}_{\mathbb{O}}) = [-2, \infty)_{\mathbb{Z}}$

20 / 31

$SU(5) \times U(1)$ -Tate model from 1706.04616

Input and Output

•
$$C_{5_{-2}} \subseteq \mathbb{P}^2_{\mathbb{Q}}$$

• $L_{5_{-2}} \leftrightarrow F$ and F defined by
 $S(-36) \oplus S(-39) \oplus S(-41) \oplus$
 $S(-23) \oplus S(-38) \rightarrow$
 $S(-6) \oplus S(-21) \twoheadrightarrow F \rightarrow 0$

20/31

Apply Algorithm

$SU(5) \times U(1)$ -Tate model from 1706.04616

Input and Output

•
$$C_{\mathbf{5}_{-2}} \subseteq \mathbb{P}^2_{\mathbb{Q}}$$

•
$$L_{5_{-2}} \leftrightarrow F$$
 and F defined by
 $S(-36) \oplus S(-39) \oplus S(-41) \oplus$
 $S(-23) \oplus S(-38) \rightarrow$
 $S(-6) \oplus S(-21) \twoheadrightarrow F \rightarrow 0$

Apply Algorithm

•
$$V^{0}(\mathbb{P}^{2}_{\mathbb{Q}}) = (-\infty, -1]_{\mathbb{Z}}, V^{1}(\mathbb{P}^{2}_{\mathbb{Q}}) = \mathbb{Z}, V^{2}(\mathbb{P}^{2}_{\mathbb{Q}}) = [-2, \infty)_{\mathbb{Z}}$$

• $I = B^{(44)}_{\Sigma} \equiv \langle x^{44}_{0}, x^{44}_{1}, x^{44}_{2} \rangle$
• Compute presentation of $\operatorname{Ext}_{S}^{1} \left(B^{(44)}_{\Sigma}, F \right)_{0}$:

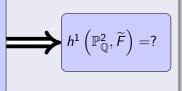
 $\operatorname{Ext}^{1}_{S}\left(B^{(44)}_{\Sigma},F\right)_{0}$

$SU(5) \times U(1)$ -Tate model from 1706.04616

Input and Output

•
$$C_{\mathbf{5}_{-2}} \subseteq \mathbb{P}^2_{\mathbb{Q}}$$

•
$$L_{5_{-2}} \leftrightarrow F$$
 and F defined by
 $S(-36) \oplus S(-39) \oplus S(-41) \oplus$
 $S(-23) \oplus S(-38) \rightarrow$
 $S(-6) \oplus S(-21) \twoheadrightarrow F \rightarrow 0$



Apply Algorithm

•
$$V^{0}(\mathbb{P}^{2}_{\mathbb{Q}}) = (-\infty, -1]_{\mathbb{Z}}, V^{1}(\mathbb{P}^{2}_{\mathbb{Q}}) = \mathbb{Z}, V^{2}(\mathbb{P}^{2}_{\mathbb{Q}}) = [-2, \infty)_{\mathbb{Z}}$$

• $I = B_{\Sigma}^{(44)} \equiv \langle x_{0}^{44}, x_{1}^{44}, x_{2}^{44} \rangle$
• Compute presentation of $\text{Ext}_{S}^{1} \left(B_{\Sigma}^{(44)}, F \right)_{0}$:
 $\mathbb{Q}^{37425} \to \mathbb{Q}^{27201} \twoheadrightarrow \text{Ext}_{S}^{1} \left(B_{\Sigma}^{(44)}, F \right)_{0} \to 0$

$SU(5) \times U(1)$ -Tate model from 1706.04616

Input and Output

•
$$C_{5_{-2}} \subseteq \mathbb{P}^2_{\mathbb{Q}}$$

• $L_{5_{-2}} \leftrightarrow F$ and F defined by
 $S(-36) \oplus S(-39) \oplus S(-41)$

$$S(-23) \oplus S(-38) \rightarrow$$

$$S(-6) \oplus S(-21) \twoheadrightarrow F \rightarrow 0$$

$$\implies h^1\left(\mathbb{P}^2_{\mathbb{Q}},\widetilde{F}\right) = ?$$

Apply Algorithm

•
$$V^{0}(\mathbb{P}^{2}_{\mathbb{Q}}) = (-\infty, -1]_{\mathbb{Z}}, V^{1}(\mathbb{P}^{2}_{\mathbb{Q}}) = \mathbb{Z}, V^{2}(\mathbb{P}^{2}_{\mathbb{Q}}) = [-2, \infty)_{\mathbb{Z}}$$

• $I = B_{\Sigma}^{(44)} \equiv \langle x_{0}^{44}, x_{1}^{44}, x_{2}^{44} \rangle$
• $\mathbb{Q}^{37425} \to \mathbb{Q}^{27201} \twoheadrightarrow \operatorname{Ext}_{S}^{1} \left(B_{\Sigma}^{(44)}, F \right)_{0} \to 0$
 $\Rightarrow 28 = \dim_{\mathbb{Q}} \left[\operatorname{Ext}_{S}^{1} \left(B_{\Sigma}^{(44)}, F \right)_{0} \right] = h^{1} \left(\mathbb{P}^{2}_{\mathbb{Q}}, \widetilde{F} \right)$

 \oplus

Summary on Implementation

Summary on Implementation

• Have combined

• cohomCalg by R. Blumenhagen et al.

 $1003.5217,\ 1006.0780,\ 1006.2392,\ 1010.3717$

 work of G. Smith et al. on computing sheaf cohomologies math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25

Summary on Implementation

• Have combined

- cohomCalg by R. Blumenhagen et al.
 - 1003.5217, 1006.0780, 1006.2392, 1010.3717
- work of G. Smith et al. on computing sheaf cohomologies math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25
- Have improved computation of \mathbb{Q} -dimension of Ext^i_S by
 - parallelisation
 - replacing Groebner basis computations by Gauß-eliminations

Summary on Implementation

• Have combined

• cohomCalg by R. Blumenhagen et al.

1003.5217, 1006.0780, 1006.2392, 1010.3717

- work of G. Smith et al. on computing sheaf cohomologies math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25
- Have improved computation of \mathbb{Q} -dimension of Ext^i_S by
 - parallelisation
 - replacing Groebner basis computations by Gauß-eliminations
- ⇒ Modern algorithm to compute sheaf cohomologies of all coherent sheaves on smooth, complete toric varieties

Summary on Implementation

• Have combined

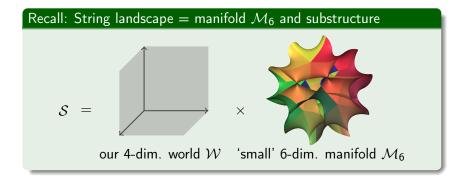
• cohomCalg by R. Blumenhagen et al.

1003.5217, 1006.0780, 1006.2392, 1010.3717

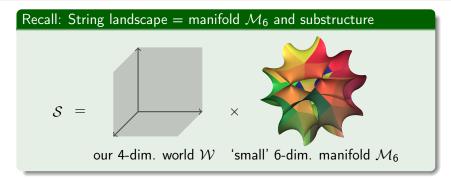
- work of G. Smith et al. on computing sheaf cohomologies math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25
- Have improved computation of \mathbb{Q} -dimension of Ext^i_S by
 - parallelisation
 - replacing Groebner basis computations by Gauß-eliminations
- ⇒ Modern algorithm to compute sheaf cohomologies of all coherent sheaves on smooth, complete toric varieties
- \Rightarrow Many applications in string theory

Questions so far?

Moduli dependence of sheaf cohomologies



Moduli dependence of sheaf cohomologies



Strategies

- So far: One choice of manifold \mathcal{M}_6 with substructure
- \Rightarrow CAP allows to count number of generations n_g
 - Now: How does n_g vary if we alter \mathcal{M}_6 and its substructure?

Moduli dependence of sheaf cohomologies II

Example on substructure: $\overline{SU(5)} \times U(1)_{Y}$ -Tate model

• Substruc.
$$\supset C_{5_{-2}} = V(\widetilde{a_{1,0}} \cdot \widetilde{a_{4,3}} - \widetilde{a_{3,2}} \cdot \widetilde{a_{2,1}}) \subseteq \mathbb{P}^2_{\mathbb{Q}}$$

•
$$\widetilde{a_{1,0}} = c_1 x_1^4 + c_2 x_1^3 x_2 + c_3 x_1^2 x_2 x_3 + \ldots \in \mathbb{Q}[x_1, x_2, x_3]$$

• deg $\widetilde{a_{1,0}} = 7$, deg $\widetilde{a_{2,1}} = 7$, deg $\widetilde{a_{3,2}} = 10$, deg $\widetilde{a_{4,3}} = 13$

Moduli dependence of sheaf cohomologies II

Example on substructure: $\overline{SU(5)} \times U(1)_{Y}$ -Tate model

• Substruc.
$$\supset C_{\mathbf{5}_{-2}} = V(\widetilde{a_{1,0}} \cdot \widetilde{a_{4,3}} - \widetilde{a_{3,2}} \cdot \widetilde{a_{2,1}}) \subseteq \mathbb{P}^2_{\mathbb{Q}}$$

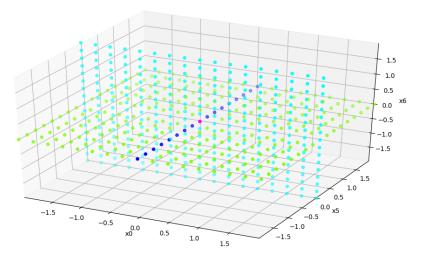
•
$$\widetilde{a_{1,0}} = c_1 x_1^4 + c_2 x_1^3 x_2 + c_3 x_1^2 x_2 x_3 + \ldots \in \mathbb{Q}[x_1, x_2, x_3]$$

• deg
$$\widetilde{a_{1,0}} = 7$$
, deg $\widetilde{a_{2,1}} = 7$, deg $\widetilde{a_{3,2}} = 10$, deg $\widetilde{a_{4,3}} = 13$

$SU(5) \times U(1)$ -Tate Model from 1706.04616 (R = 5₋₂)

	$\widetilde{a_{1,0}}$	$\widetilde{a_{2,1}}$	<i>a</i> _{3,2}	<i>a</i> _{4,3}	$h^0(C_{R},L_{R})$
M_1	$(x_1 - x_2)^4$	x ₁ ⁷	x ₂ ¹⁰	x ₃ ¹³	22
M_2	$(x_1 - x_2) x_3^3$	$x_1^{\bar{7}}$	x ₂ ¹⁰	x ₃ ¹³	21
M_3	x ₃ ⁴	x_{1}^{7}	$x_{2}^{7}(x_{1}+x_{2})^{3}$	$x_3^{12}(x_1-x_2)$	11
M_4	$(x_1 - x_2)^3 x_3$	x_{1}^{7}	x ₂ ¹⁰	x ₃ ¹³	9
M_5	x ₃ ⁴	x_{1}^{7}	$x_2^8 (x_1 + x_2)^2$	$x_3^{11}(x_1-x_2)^2$	7
M_6	x ₃ ⁴	x_1^7	x ₂ ¹⁰	$x_3^8 (x_1 - x_2)^5$	6
<i>M</i> ₇	x ₃ ⁴	x_1^7	$x_2^9(x_1+x_2)$	$x_3^{10} (x_1 - x_2)^3$	5

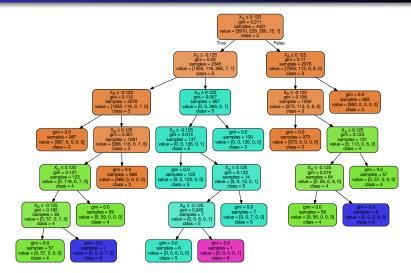
Other example: dP_3 -example from 1802.08860



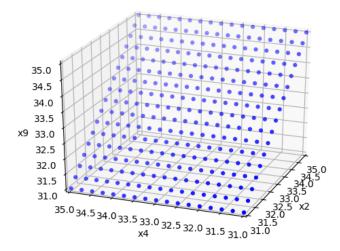
4913 data points, 3193 used for training, 1720 correctly predicted

25/31

Other example: dP_3 -example from 1802.08860 II

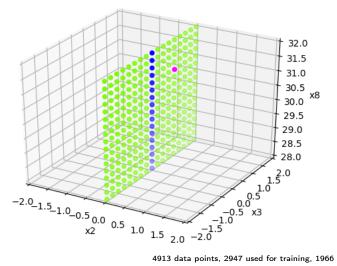


Other example: dP_3 -example from 1802.08860 III



4913 data points, 4910 used for training, 3 correctly predicted

Other example: dP_3 -example from 1802.08860 IV



4913 data points, 2947 used for training, 1966 correctly predicted

28/31

Questions so far?

Summary

• Sheaf cohomology feature prominently in string theory

0403166, 0808.3621, 1106.4804, 1706.04616, 1802.08860 and many others

- Sheaf cohomology feature prominently in string theory 0403166, 0808.3621, 1106.4804, 1706.04616, 1802.08860 and many others
- On toric varieties *S*-fpgrmod can serve as computer model for coherent sheaves 1003.1943, 1202.3337, 1210.1425, 1212.4068, 1409.2028, 1409.6100

- Sheaf cohomology feature prominently in string theory 0403166, 0808,3621, 1106,4804, 1706,04616, 1802,08860 and many others
- On toric varieties *S*-fpgrmod can serve as computer model for coherent sheaves 1003.1943, 1202.3337, 1210.1425, 1212.4068, 1409.2028, 1409.6100
- \Rightarrow Implemented via the following CAP-packages:
 - 'CAPCategoryOfProjectiveGradedModules'
 - 'CAPPresentationCategory'
 - 'PresentationByProjectiveGradedModules'

• Sheaf cohomology feature prominently in string theory

 $0403166,\ 0808.3621,\ 1106.4804,\ 1706.04616,\ 1802.08860\ \text{and}\ \text{many}\ \text{others}$

- On toric varieties *S*-fpgrmod can serve as computer model for coherent sheaves 1003.1943, 1202.3337, 1210.1425, 1212.4068, 1409.2028, 1409.6100
- \Rightarrow Implemented via the following CAP-packages:
 - 'CAPCategoryOfProjectiveGradedModules'
 - 'CAPPresentationCategory'
 - 'PresentationByProjectiveGradedModules'
- ⇒ Modern algorithm for computation of sheaf cohomology implemented via the following packages:
 - 'TruncationsOfPresentationsByProjectiveGradedModules'
 - 'SheafCohomologyOnToricVarieties'

• Sheaf cohomology feature prominently in string theory

 $0403166,\ 0808.3621,\ 1106.4804,\ 1706.04616,\ 1802.08860\ \text{and}\ \text{many}\ \text{others}$

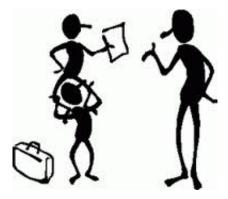
- On toric varieties *S*-fpgrmod can serve as computer model for coherent sheaves 1003.1943, 1202.3337, 1210.1425, 1212.4068, 1409.2028, 1409.6100
- \Rightarrow Implemented via the following CAP-packages:
 - 'CAPCategoryOfProjectiveGradedModules'
 - 'CAPPresentationCategory'
 - 'PresentationByProjectiveGradedModules'
- ⇒ Modern algorithm for computation of sheaf cohomology implemented via the following packages:
 - 'TruncationsOfPresentationsByProjectiveGradedModules'
 - 'SheafCohomologyOnToricVarieties'
 - Implementations available at https://github.com/HereAround

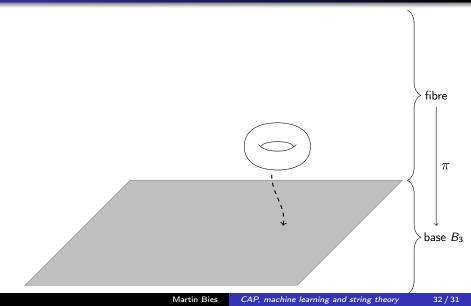
• Sheaf cohomology feature prominently in string theory

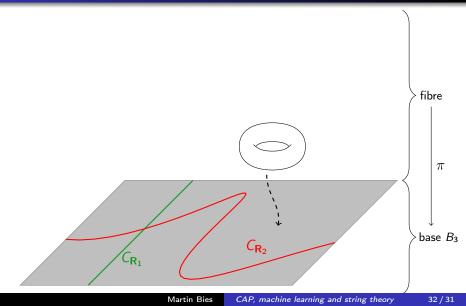
0403166, 0808.3621, 1106.4804, 1706.04616, 1802.08860 and many others

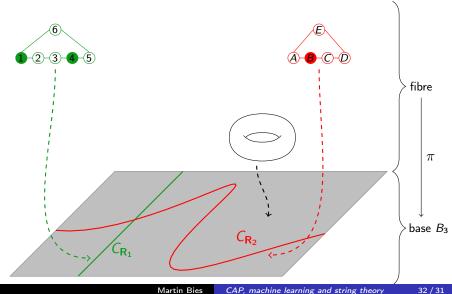
- On toric varieties *S*-fpgrmod can serve as computer model for coherent sheaves 1003.1943, 1202.3337, 1210.1425, 1212.4068, 1409.2028, 1409.6100
- \Rightarrow Implemented via the following CAP-packages:
 - 'CAPCategoryOfProjectiveGradedModules'
 - 'CAPPresentationCategory'
 - 'PresentationByProjectiveGradedModules'
- ⇒ Modern algorithm for computation of sheaf cohomology implemented via the following packages:
 - 'TruncationsOfPresentationsByProjectiveGradedModules'
 - 'SheafCohomologyOnToricVarieties'
 - Implementations available at https://github.com/HereAround
 - Current effort: Open door for statistical analysis on the string landscape via machine learning
- \Rightarrow Decision trees seem to help us with this task

Thank you for your attention!









From Divisors to Modules

Input and Output

•
$$C = V(g_1, \dots, g_k) \subseteq X_{\Sigma}$$

• $D = V(f_1, \dots, f_n) \in \text{Div}(C)$
 $M \text{ s.t. supp}(\widetilde{M}) = C$
and $\widetilde{M}|_C \cong \mathcal{O}_C(-D)$

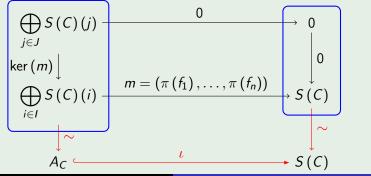
From Divisors to Modules

Input and Output

•
$$C = V(g_1, \ldots, g_k) \subseteq X_{\Sigma}$$

• $D = V(f_1, \ldots, f_n) \in \text{Div}(C)$
 $M \text{ s.t. supp}(\widetilde{M}) = C$
and $\widetilde{M}|_C \cong \mathcal{O}_C(-D)$

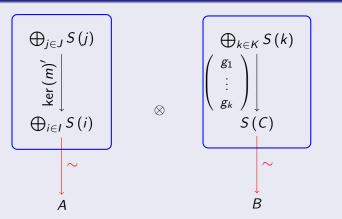
Step 1: $S(C) := S/\langle g_1, \ldots, g_k \rangle$, $\pi : S \twoheadrightarrow S(C)$



Martin Bies CAP, machine learning and string theory

From Divisors to Modules II

Step 2: Extend by zero to coherent sheaf on X_{Σ}



 $A = A \otimes B$ satisfies $\operatorname{Supp}(\widetilde{M}) = C$ and $\widetilde{M}|_C \cong \mathcal{O}_C(-D)$

From Divisors to Modules III

Input and Output

•
$$C = V(g_1, \dots, g_k) \subseteq X_{\Sigma}$$

• $D = V(f_1, \dots, f_n) \in \text{Div}(C)$
 $M \text{ s.t. } \text{supp}(\widetilde{M}) = C$
and $\widetilde{M}|_C \cong \mathcal{O}_C(+D)$

Strategy

2 Dualise via
$$A_C^{\vee} := \operatorname{Hom}_{S(C)}(S(C), A_C)$$

③ Extend by zero by considering
$$A^{\vee} \otimes B$$

$$\Rightarrow M^{ee}:=A^{ee}\otimes B$$
 satisfies $\operatorname{Supp}(\widetilde{M})=C$ and $\widetilde{M}|_C\cong \mathcal{O}_C\left(+D
ight)$

An idea of the sheafification functor

An idea of the sheafification functor

Affine open cover

- Toric variety X_{Σ} with Cox ring S
- \Rightarrow Covered by affine opens $\left\{ U_{\sigma} = \operatorname{Specm}(S_{(x^{\hat{\sigma}})}) \right\}_{\sigma \in \Sigma}$

An idea of the sheafification functor

Affine open cover

- Toric variety X_{Σ} with Cox ring S
- \Rightarrow Covered by affine opens $\left\{ U_{\sigma} = \operatorname{Specm}(S_{(x^{\hat{\sigma}})}) \right\}_{\sigma \in \Sigma}$

Localising (\leftrightarrow restricting) a module

•
$$M \in S$$
-fpgrmod

$$\Rightarrow M_{(x^{\hat{\sigma}})}$$
 is f.p. $S_{(x^{\hat{\sigma}})}$ -module

An idea of the sheafification functor

Affine open cover

- Toric variety X_{Σ} with Cox ring S
- \Rightarrow Covered by affine opens $\left\{ U_{\sigma} = \operatorname{Specm}(S_{(x^{\hat{\sigma}})}) \right\}_{\sigma \in \Sigma}$

$\overline{\text{Localising}} (\leftrightarrow \text{restricting})$ a module

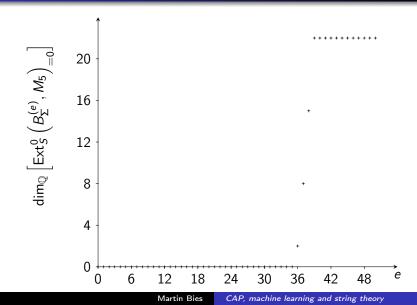
•
$$M \in S$$
-fpgrmod

$$\Rightarrow M_{(x^{\hat{\sigma}})}$$
 is f.p. $S_{(x^{\hat{\sigma}})}$ -module

Consequence

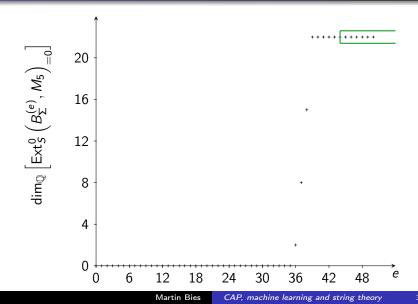
- $M_{(x^{\hat{\sigma}})} \leftrightarrow \text{coherent sheaf on } U_{\sigma} = \operatorname{Specm}(S_{(x^{\hat{\sigma}})})$
- local sections: $\widetilde{M_{(x^{\hat{\sigma}})}}(D(f)) = M_{(x^{\hat{\sigma}})} \otimes_{S_{(x^{\hat{\sigma}})}} \left(S_{(x^{\hat{\sigma}})}\right)_{f}$

Module M₅ from 1706.04616: Quality Check I

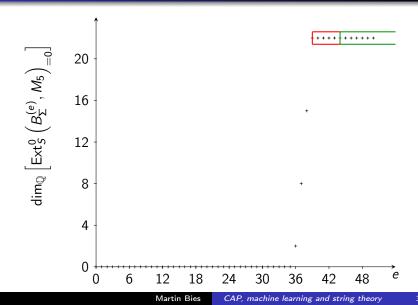


31/31

Module M₅ from 1706.04616: Quality Check I

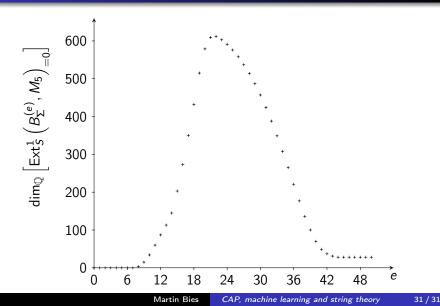


Module M₅ from 1706.04616: Quality Check I

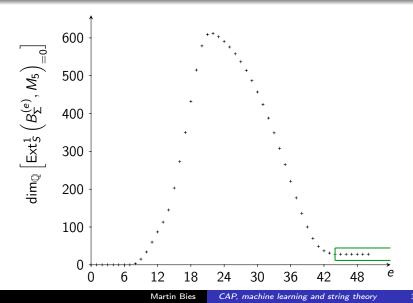


31/31

Module M₅ from 1706.04616: Quality Check II



Module M₅ from 1706.04616: Quality Check II



How to determine the ideal *I* in step 2 of algorithm?

Input

• $M \in S$ -fpgrmod

•
$$V^{k}(X_{\Sigma}) = \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^{k}(X_{\Sigma}, L) = 0 \right\}$$

Input

- $M \in S$ -fpgrmod
- $V^{k}(X_{\Sigma}) = \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^{k}(X_{\Sigma}, L) = 0 \right\}$

Preparation

- $p \in Cl(X_{\Sigma})$ ample, $m(p) = \{m_1, \dots, m_k\}$ all monomials of degree p and $l(p, e) = \langle m_1^e, \dots, m_k^e \rangle$
- Pick e = 0 and increase it until subsequent conditions are met

Input

• $M \in S$ -fpgrmod

•
$$V^k(X_{\Sigma}) = \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^k(X_{\Sigma}, L) = 0 \right\}$$

• Look at spectral sequence
$$\mathbb{E}_{2}^{p,q} \Rightarrow \operatorname{Ext}_{\mathcal{O}_{X_{\Sigma}}}^{p+q} \left(\widetilde{I(p,e)}, \widetilde{M} \right)$$

Input

- $M \in S$ -fpgrmod
- $V^{k}(X_{\Sigma}) = \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^{k}(X_{\Sigma}, L) = 0 \right\}$

- Look at spectral sequence $\mathbb{E}_{2}^{p,q} \Rightarrow \operatorname{Ext}_{\mathcal{O}_{X_{\Sigma}}}^{p+q} \left(\widetilde{I(p,e)}, \widetilde{M} \right)$
- Some objects $\mathbb{E}_{2}^{p,q}$ vanish as seen by $V^{k}(X_{\Sigma})$

Input

•
$$M \in S$$
-fpgrmod

•
$$V^k(X_{\Sigma}) = \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^k(X_{\Sigma}, L) = 0 \right\}$$

How to find ideal /?

- Look at spectral sequence $\mathbb{E}_{2}^{p,q} \Rightarrow \operatorname{Ext}_{\mathcal{O}_{X_{\Sigma}}}^{p+q} \left(\widetilde{I(p,e)}, \widetilde{M} \right)$
- Some objects $\mathbb{E}_{2}^{p,q}$ vanish as seen by $V^{k}(X_{\Sigma})$
- Does

 \[
 E_2^{p,q} \]
 degenerate (on *E*₂-sheet)? Is its limit (co)homology
 H^m (**C**⁰) of complex of global sections of vector bundles?

31 / 31

Input

•
$$M \in S$$
-fpgrmod

•
$$V^k(X_{\Sigma}) = \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^k(X_{\Sigma}, L) = 0 \right\}$$

- Look at spectral sequence $\mathbb{E}_{2}^{p,q} \Rightarrow \operatorname{Ext}_{\mathcal{O}_{X_{\Sigma}}}^{p+q} \left(\widetilde{I(p,e)}, \widetilde{M} \right)$
- Some objects $\mathbb{E}_{2}^{p,q}$ vanish as seen by $V^{k}(X_{\Sigma})$
- Does

 \[
 E_2^{p,q} \]
 degenerate (on *E*₂-sheet)? Is its limit (co)homology
 H^m (**C**⁰) of complex of global sections of vector bundles?
- \Rightarrow If no increase *e* until this is the case!

Input

•
$$M \in S$$
-fpgrmod

•
$$V^k(X_{\Sigma}) = \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^k(X_{\Sigma}, L) = 0 \right\}$$

- Look at spectral sequence $\mathbb{E}_{2}^{p,q} \Rightarrow \operatorname{Ext}_{\mathcal{O}_{X_{\Sigma}}}^{p+q} \left(\widetilde{I(p,e)}, \widetilde{M} \right)$
- Some objects $\mathbb{E}_{2}^{p,q}$ vanish as seen by $V^{k}(X_{\Sigma})$
- Does E^{p,q}₂ degenerate (on E₂-sheet)? Is its limit (co)homology H^m (C⁰) of complex of global sections of vector bundles?
- \Rightarrow If no increase *e* until this is the case!
 - \bullet Long exact sequence: sheaf cohomology \leftrightarrow local cohomology

Input

•
$$M \in S$$
-fpgrmod

•
$$V^k(X_{\Sigma}) = \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^k(X_{\Sigma}, L) = 0 \right\}$$

- Look at spectral sequence $\mathbb{E}_{2}^{p,q} \Rightarrow \operatorname{Ext}_{\mathcal{O}_{X_{\Sigma}}}^{p+q} \left(\widetilde{I(p,e)}, \widetilde{M} \right)$
- Some objects $\mathbb{E}_{2}^{p,q}$ vanish as seen by $V^{k}(X_{\Sigma})$
- Does E^{p,q}₂ degenerate (on E₂-sheet)? Is its limit (co)homology H^m (C⁰) of complex of global sections of vector bundles?
- \Rightarrow If no increase *e* until this is the case!
 - \bullet Long exact sequence: sheaf cohomology \leftrightarrow local cohomology
- $\Rightarrow \text{ Increase } e \text{ further until } H^m\left(\mathsf{C}^0\right) \cong \mathsf{Ext}^m_S\left(I\left(p,e\right),M\right)_0$

The Hom-Embedding

