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Zeta values

ζ(n) :=
∑
k≥1

1

kn
(n ≥ 2)

Euler:
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ζ(2n)z2n = −πz
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2
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z4 +

π6

945
z6 + . . .

Folklore conjecture

π, ζ(3), ζ(5), ζ(7), . . . are algebraically independent over Q.

Known facts

1 π is transcendental (Lindemann 1882)

2 ζ(3) is irrational (Apéry 1978)

3 dimQ〈ζ(3), ζ(5), ζ(7), . . . 〉Q =∞ (Ball-Rivoal 2000)

4 at least one of ζ(5), ζ(7), ζ(9), ζ(11) is irrational (Zudilin 2004)
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Multiple zeta values

For (n1, . . . , nr ) ∈ Zr with all ni ≥ 1 and nr ≥ 2,

ζ(n1, . . . , nr ) =
∑

1≤k1<···<kr

1

kn1
1 . . . knr

r
.

Its weight is n = n1 + · · ·+ nr . MZV’s span a Q-algebra Z.

Experiments:

n 2 3 4 5 6 7 8 9 10 11 12 13
2n−2 1 2 4 8 16 32 64 128 256 512 1024 2048
dexp
n 1 1 1 2 2 3 4 5 7 9 12 16

Conjecture (Zagier)

If Zn is the span of MZV’s of weight n, then Z =
⊕

n≥0 Zn

dimQ Zn = dn, where
∑

n≥0 dnt
n = 1

1−t2−t3 ,

i.e. d0 = 1, d1 = 0, d2 = 1, and dn = dn−2 + dn−3 for n ≥ 3.

Many relations, but graded dimension is predictable.
Linear (in)dependence is easier than algebraic independence.
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Structure of irrationality proofs

Strategy

Fix MZV’s ζ1, . . . , ζk . Suppose we have:

1 for all n ≥ 0, a non-zero Q-linear combination

In = a(1)
n ζ1 + · · ·+ a(k)

n ζk ,

where a
(i)
n ∈ Q;

2 a bound on the linear forms In, e.g. find a small ε > 0 such that

0 < In < εn;
3 some control on the coefficients a

(k)
n , e.g. find r such that

D r
na

(k)
n ∈ Z, where Dn = lcm(1, 2, . . . , n).

Note: prime number theorem =⇒ limn→∞ D
1/n
n = e.

Now assume ζ1, . . . , ζk ∈ Q, say in 1
qZ. Then

qDr
nIn ≥ 1, hence erε ≥ 1.

Contradiction if r and ε are sufficiently small, so that erε < 1.
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Irrationality of ζ(3)

Beuker’s integral:

In =

∫ 1

0

∫ 1

0

∫ 1

0

xn(1− x)nyn(1− y)nzn(1− z)n

(1− (1− xy)z)n+1
dx dy dz

= anζ(3) + bn

with an ∈ Z and D3
nbn ∈ Z, bounded by

0 < In < εn, ε = (
√

2− 1)4.

Numerical application:

e3ε = 0.591 · · · < 1,

hence ζ(3) is irrational!
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The moduli space M0,N

M0,N = {curves of genus 0 with N ordered marked points}
= {N ordered marked points on P1}/PGL2

= {(t1, . . . , tN−3) ∈ AN−3 | ti 6= tj , ti 6= 0, 1}

Let n := N − 3. A connected component of M0,N(R) is the simplex

δn = {0 < t1 < · · · < tn < 1} ⊂ Rn.

Example: N = 5, n = 2
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A recipe: periods of moduli spaces M0,N

Examples of period integrals on M0,N :∫
δn

∏
i

taii
∏
j

(1− tj)
bj
∏
i<j

(ti − tj)
ci,j dt1 . . . dtn

for some ai , bj , ci,j ∈ Z such that the integral converges.

Theorem (Brown)

The periods of moduli spaces M0,N are Q[2πi ]-linear combinations of
multiple zeta values of total weight ≤ n = N − 3.

General recipe for linear forms in MZV’s

Consider family of convergent integrals

If ,ω(k) =

∫
δn

f kω

where ω ∈ Ωn(M0,N ,Q) is a regular n-form and f ∈ Ω0(M0,N ,Q).
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Vanishing of coefficients

In view of irrationality proofs, we want the additional requirement:

4 Vanishing theorems for some of the coefficients a
(i)
j .

Generic period integral on M0,6 gives 1, ζ(2) and ζ(3)...
Get rid of ζ(2)! Then we obtain exactly the Apéry sequence.

Ball-Rivoal: “very well-poised hypergeometric series”
=⇒ odd zeta values only.

In terms of algebraic geometry: consider the (mixed Tate) motive

HA,B := Hn(M0,N \ A,B \ A), where

M0,N is the Deligne-Mumford compactification;

A is a divisor where differential forms are allowed to have poles;

B is a divisor containing the boundary of the domain of integration.

Then grW2k HA,B = 0 =⇒ vanishing of coefficients a
(i)
j in weight k.

Daniel Juteau (IMJ-PRG: CNRS, Paris 7) Motives, algorithms and programming



Vanishing of coefficients

In view of irrationality proofs, we want the additional requirement:

4 Vanishing theorems for some of the coefficients a
(i)
j .

Generic period integral on M0,6 gives 1, ζ(2) and ζ(3)...
Get rid of ζ(2)! Then we obtain exactly the Apéry sequence.
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Periods and cohomology

For a smooth algebraic variety defined over Q, we have:

the Betti cohomology groups (singular cohomology) Hk
B(X );

the algebraic de Rham cohomology groups Hk
dR(X );

the comparison isomorphism Hk
B(X )⊗Q C ∼−→ Hk

dR(X )⊗Q C, whose
coefficients are periods. Equivalently: Betti / de Rham pairing.

Q(−1) = H1(C∗) γ
(
2πi
)dz/z

γ

K2 = H1(C∗, {1, 2})

0→ Q(0)→ K2 → Q(−1)→ 0, “ramified at 2”

1 2

γ
σ

(
1 log 2
0 2πi

)dz dz/z

σ
γ
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Mixed Tate motives over Q, over Z (“non-ramified”)

Category MTM(Q): abelian, rigid tensor category (symmetric, duals),
exact faithful tensor functors ωdR, ωB : MTM(Q)→ Vect (Tannakian)

For each n ∈ Z, simple object Q(−n) = Q(−1)⊗n.
Period matrix: ( (2πi)n ). Effective if n ≥ 0: Q(−n) = Hn((C∗)n).
for each a ∈ Q>0, we have an extension in MTM(Q)

0→ Q(0)→ Ka → Q(−1)→ 0

Period matrix:

(
1 log a
0 2πi

)
(Kummer motive, trivial extension iff a = 1)
For n = 3, 5, 7, . . . , we have a non-trivial extension

0→ Q(0)→ Zn → Q(−n)→ 0

Period matrix:

(
1 ζ(n)
0 (2πi)n

)
All higher Ext vanish.
In MTM(Z), the extensions Ka are not allowed.
Per(MTM(Z)) =

⋃
N Per(M0,N) = Q[2πi ][MZV] = Q[2πi ][MZV2,3]
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Example: ζ(2)

ζ(2) =
∑
k≥1

1

k2
=

∫∫
0<x<y<1

dx dy

(1− x)y
·

A

B

P2

6 lines, 7 points

π

blow-up

π

Ã

B̃

P̃2 = M0,5

10 lines, 15 points

H := H2(P̃2 \ Ã, B̃ \ Ã). Period matrix:

(
1 ζ(2)
0 (2πi)2

)
∼
(

1 0
0 (2πi)2

)
.
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Ã

B̃

P̃2 = M0,5

10 lines, 15 points
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Bi-arrangements of hyperplanes

Definition (Dupont 2014)

A bi-arrangement of hyperplanes is a triple (L,M, χ) where

L = {L1, . . . , Ll} is a set of hyperplanes in Pn;

M = {M1, . . . ,Mm} is a set of hyperplanes in Pn;

χ : S = Flats(A ∪ B)→ {λ, µ} is a coloring function, satisfying

χ(Li ) = λ and χ(Mj) = µ for all i , j

Definition (Dupont 2014)

The motive of the bi-arrangement of hyperplanes (L,M, χ) is the
collection of relative cohomology groups (mixed Hodge structures)

H•(P̃n \ L̃, M̃ \ L̃) .

Inspired by (Aomoto 1977, 1982) and
(Beilinson-Goncharov-Schechtman-Varchenko, 1989).
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The Orlik-Solomon bicomplex

Definition

We define the Orlik-Solomon bicomplex A•,• = A•,•(L,M, χ):

// A2,0
//

��

A1,0
d′
//

��

A0,0

d′′

��
// A1,1

��

// A0,1

��
// A0,2

��

We define Ai,j =
⊕

S∈Si+j

AS
i,j and the differentials d ′ and d ′′ by induction

on the codimension i + j . Here Sk = flats of codimension k.
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The Orlik-Solomon bicomplex

Base step of the induction : A0,0 = Q.

Inductive step :

For a flat Σ such that χ(Σ) = λ, we define AΣ
i,j as a kernel :

0→ AΣ
i,j

d′

→
⊕
S⊃Σ

AS
i−1,j

d′

→
⊕
T⊃Σ

AT
i−2,j .

For a flat Σ such that χ(Σ) = µ, we define AΣ
i,j as a cokernel :

0← AΣ
i,j

d′′

←
⊕
S⊃Σ

AS
i,j−1

d′′

←
⊕
T⊃Σ

AT
i,j−2 .

In any case, we complete the squares by the universal property.

Hence we use:

KernelObject, KernelMorphism, KernelLift and dual versions,

MorphismBetweenDirectSums,
ComponentOfMorphismIntoDirectSum,
ComponentOfMorphismFromDirectSum. . .
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Exactness

Definition

A bi-arrangement of hyperplanes (L,M, χ) is exact if the above exact
sequences can be continued to long exact sequences

0→ AΣ
i,j

d′

→
⊕
S⊃Σ

AS
i−1,j

d′

→
⊕
T⊃Σ

AT
i−2,j

d′

→ · · ·

or

0← AΣ
i,j

d′′

←
⊕
S⊃Σ

AS
i,j−1

d′′

←
⊕
T⊃Σ

AT
i,j−2

d′′

← · · ·

Remark

– All arrangements of hyperplanes (A,∅, λ) are exact,
A•,0(A,∅, λ) = A•(A).

– Deletion and restriction formalism for exact bi-arrangements of
hyperplanes.
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The main theorem

Theorem (Dupont 2014)

For an exact bi-arrangement of hyperplanes (L,M, χ) in Pn, “the
Orlik-Solomon bicomplex A•,•(L,M, χ) computes the motive
H•(L,M, χ)”.

More precisely, for each k = 0, . . . , n :

we consider the double complex A0≤•≤k,0≤•≤n−k ;

we let (k)A• be its total complex ;

then grW2kH
r (L,M, χ) ∼= H2k−r (

(k)A•)
(W = the weight filtration coming from mixed Hodge theory).

Remark

For arrangements of hyperplanes, we recover the (projective)
Brieskorn-Orlik-Solomon theorem, with only weight gr2kH

k .

The weight-graded quotients grW2kH
•(L,M, χ) are combinatorial

invariants, but not the whole motive H•(L,M, χ).
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Explicit computations: the tame case

Combinatorial notion of tame bi-arrangements of hyperplanes.

– Generic bi-arrangements are tame

– tame =⇒ exact.

Proposition

For a tame bi-arrangement of hyperplanes (L,M, χ), the Orlik-Solomon
bicomplex A•,•(L,M, χ) is an explicit sub-quotient of A•(L)⊗ A•(M)∨.

Example

L1

L2

M

P A•,• = Λ•(e1, e2)⊗ Λ•(f ∨1 )/(d(e1 ∧ e2)⊗ f ∨1 )

Example

One can define multiple zeta bi-arrangements Z(n1, . . . , nr ) that are
tame.
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Basic cellular integrals

Given a permutation σ ∈ SN , define on PN \
⋃
{zi = zj}:

f̃σ =
∏

i∈Z/NZ

zi − zi+1

zσ(i) − zσ(i+1)
and ω̃σ =

dz1 . . . dzN∏
i∈Z/NZ

(zσ(i) − zσ(i+1))
,

both PGL2-invariant, hence we get fσ ∈ O(M0,N), and ωσ ∈ Ωn(M0,N)
after dividing by an invariant volume form on PGL2.

Basic cellular integral:

Iσ(k) =

∫
δn

f kσ ωσ

It converges iff σ is a convergent permutation (“dinner party problem”).

Number of convergent configurations, up to dihedral symmetries:

N 4 5 6 7 8 9 10 11
CN 0 1 1 5 17 105 771 7028

N = 5: only 5π = [5, 2, 4, 1, 3], N = 6: only 6π = [6, 2, 4, 1, 5, 3]
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Vanishing for basic cellular integrals

Theorem (Brown 2016)

Suppose that A,B ⊂M0,N are cellular boundary divisors with no
common irreducible components. Let n = N − 3. Then

grW2 HA,B = grW2n−2 HA,B = 0

and grW0 HA,B and grW2n HA,B are both 1-dimensional.

Hence for the unique convergent configurations for N = 5, 6, we must
have

grW• HA,B =

{
Q(0)⊕Q(−2) for N = 5,

Q(0)⊕Q(−3) for N = 6.

Those are the Apéry motives! They give the linear combinations of 1 and
ζ(2) for N = 5, resp. 1 and ζ(3) for N = 6, used in the irrationality
proofs.
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Flat poset for ζ(2)

∅

1 2 3 4 5 6

12 136 234 35 145 256 46

123456 35 may be set red or blue

morphism red → blue

KernelObjectFunctorial

TotalComplexFunctorial

Take the image!

Irrelevant for ζ(2):
101 � 101 ↪→ 101

Relevant for ζ(3):

1011 � 1001 ↪→ 1101
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More basic cellular integrals

N = 7

Two dual pairs and one self-dual configuration:

7π1 = [7, 2, 4, 1, 6, 3, 5] ←→ 7π
∨
1 = [7, 2, 5, 1, 4, 6, 3]

7π2 = [7, 2, 4, 6, 1, 3, 5] ←→ 7π
∨
1 = [7, 3, 6, 2, 5, 1, 4]

7π3 = [7, 2, 5, 1, 3, 6, 4] = 7π
∨
3

Experimentally, all give linear combinations of 1, ζ(2) and ζ(4).
With MotivesForBiarrangements, based on CAP, we can confirm:

grW• HA,B = Q(0)⊕Q(−2)⊕Q(−4)

N = 8

Among the 17 convergent configurations, let us note

8π8 = [8, 2, 5, 1, 6, 4, 7, 3]←→ 8π
∨
8 = [8, 2, 4, 1, 7, 5, 3, 6]

With MotivesForBiarrangements, based on CAP, we can confirm:

grW• HA,B =

{
Q(0)⊕Q(−3)⊕Q(−5) for 8π8,

Q(0)⊕Q(−2)⊕Q(−5) for 8π
∨
8 .
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