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m,¢(3),¢(5),¢(7),... are algebraically independent over Q.

@ 7 is transcendental (Lindemann 1882)
@ ((3) is irrational (Apéry 1978)
@ dimg(¢(3),¢(5),¢(7),...)g = oo (Ball-Rivoal 2000)
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Folklore conjecture
m,¢(3),¢(5),¢(7),... are algebraically independent over Q.

Known facts
@ = is transcendental (Lindemann 1882)
@ ((3) is irrational (Apéry 1978)
@ dimg(¢(3),¢(5),¢(7),-..)g = oo (Ball-Rivoal 2000)

Q at least one of ¢(5), ¢(7), ¢(9), ¢(11) is irrational (Zudilin 2004)
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For (n1,...,n,) € Z" with all n; > 1 and n, > 2,

1
C(nl,...,n,)— Z W

1<k <<k,

Its weight is n =ny +--- + n,. MZV's span a QQ-algebra Z.



Multiple zeta values

For (m,...,n,) € Z" with all n; > 1 and n, > 2,

1
C(ny,...,n) = E e
ks

1<k <<k

Its weightis n=ny +---+ n,. MZV's span a Q-algebra Z. Experiments:

n |2 3 45 6 7 8 9 10 11 12 13
2"=211 2 4 8 16 32 64 128 256 512 1024 2048
d*{1 1 12 2 3 4 5 7 9 12 16
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Conjecture (Zagier)
e If Z, is the span of MZV's of weight n, then Z = ®n20 %o
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Multiple zeta values

For (m,...,n,) € Z" with all n; > 1 and n, > 2,

1
C(ny,...,n) = E e
ks

1<k <<k

Its weightis n=ny +---+ n,. MZV's span a Q-algebra Z. Experiments:

n |2 3 45 6 7 8 9 10 11 12 13
2"=211 2 4 8 16 32 64 128 256 512 1024 2048
d*{1 1 12 2 3 4 5 7 9 12 16

Conjecture (Zagier)
e If Z, is the span of MZV's of weight n, then Z = ®n20 Zn
o dimg 2, = dy, where 3, - o dot" = —3—,

ie. dg=1,d1=0,dr=1,and d, =d,_» + d,_3 for n > 3.
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Multiple zeta values

For (m,...,n,) € Z" with all n; > 1 and n, > 2,
1
C(n]_,...,nr): Z W
1<k <<k L 70T

Its weightis n=ny +---+ n,. MZV's span a Q-algebra Z. Experiments:

n |2 3 45 6 7 8 9 10 11 12 13
2"=211 2 4 8 16 32 64 128 256 512 1024 2048
d*{1 1 12 2 3 4 5 7 9 12 16

Conjecture (Zagier)
e If Z, is the span of MZV's of weight n, then Z = ®n20 Zn
dimg Zy = dn, where 3 o dpt" = =3,

ie. dg=1,d1=0,dr=1,and d, =d,_» + d,_3 for n > 3.

Many relations, but graded dimension is predictable.
Linear (in)dependence is easier than algebraic independence.

Daniel Juteau (IMJ-PRG: CNRS, Paris 7) Motives, algorithms and programming



e Fix MZV's (1,...,(x. Suppose we have:




e Fix MZV's (1,...,(x. Suppose we have:
@ for all n > 0, a non-zero Q-linear combination

Ih=aPa + - +al¢,

where a$/) € Q;




Structure of irrationality proofs

Strategy

@ Fix MZV's (1, ..., (k. Suppose we have:
© for all n > 0, a non-zero Q-linear combination

Ih=aP% + -+ a¥¢,

where as,i) e Q;
@ a bound on the linear forms /,, e.g. find a small € > 0 such that

0< I, <e
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Structure of irrationality proofs

Strategy
@ Fix MZV's (3,..., (k. Suppose we have:

© for all n > 0, a non-zero Q-linear combination
I =36+ + a9,

where as,i) e Q;
@ a bound on the linear forms /,, e.g. find a small € > 0 such that

0< I, <€
© some control on the coefficients a{, e.g. find r such that

D2 € Z, where D, = lem(1,2,...,n).
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© for all n > 0, a non-zero Q-linear combination
I =36+ + a9,

where as,i) e Q;
@ a bound on the linear forms /,, e.g. find a small € > 0 such that
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Note: prime number theorem =—> lim,_ oo D,%/" = e.
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Structure of irrationality proofs

Strategy
@ Fix MZV's (3,..., (k. Suppose we have:

© for all n > 0, a non-zero Q-linear combination
I =36+ + a9,

where af,i) e Q;
@ a bound on the linear forms /,, e.g. find a small € > 0 such that

0< I, <€
© some control on the coefficients a{, e.g. find r such that

D2 € Z, where D, = lem(1,2,...,n).

Note: prime number theorem —> lim,_, D,%/" =e.

e Now assume (3,...,(c € Q, say in %Z.
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Structure of irrationality proofs

Strategy
@ Fix MZV's (3,..., (k. Suppose we have:

© for all n > 0, a non-zero Q-linear combination
I =36+ + a9,

where af,i) e Q;
@ a bound on the linear forms /,, e.g. find a small € > 0 such that

0< I, <€
© some control on the coefficients a{, e.g. find r such that

D2 € Z, where D, = lem(1,2,...,n).

Note: prime number theorem —> lim,_, D,%/" =e.

@ Now assume (i,...,C(k € Q, say in %Z. Then

gD, > 1, hence e'e > 1.
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Structure of irrationality proofs

Strategy
@ Fix MZV's (3,..., (k. Suppose we have:

© for all n > 0, a non-zero Q-linear combination
I =36+ + a9,

where af,i) e Q;
@ a bound on the linear forms /,, e.g. find a small € > 0 such that

0< I, <€
© some control on the coefficients a{, e.g. find r such that

D2 € Z, where D, = lem(1,2,...,n).

Note: prime number theorem —> lim,_, D,%/" =e.

@ Now assume (i,...,C(k € Q, say in %Z. Then

gD, > 1, hence e'e > 1.

Contradiction if r and € are sufficiently small, so that e"e < 1.
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Beuker's integral:

/ / / )1()i ("1( 1_ X;)):)an(ll —2)” dxdy dz
= a,((3)+ b

with a, € Z and D3b, € Z, bounded by

I

0</<e e=(V2-1)"



Irrationality of {(3)

Beuker's integral:

o [ [

= a,{(3)+ b

with a, € Z and ngn € Z, bounded by

0<l,<e", e=(V2-1*
Numerical application:

e3c=0.591--- < 1,
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Irrationality of {(3)

Beuker's integral:

o [ [

= a,{(3)+ b

with a, € Z and ngn € Z, bounded by

0< I, <em, e=(V2-1)*
Numerical application:
e3c=0.591--- < 1,

hence ¢(3) is irrational!
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Mo, n

{curves of genus 0 with N ordered marked points}
= {N ordered marked points on P}/ PGL,

{(tlv-- '7tN—3) € AN_?’ | ti 7é tja tj 7é 0; 1}



The moduli space My y

Mo,nv = {curves of genus 0 with N ordered marked points}
= {N ordered marked points on P!}/ PGL,
= {(tla"'atN—3)€AN73 | tI';étjati#Ovl}

Let n:= N — 3. A connected component of Mg n(R) is the simplex
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The moduli space My y

{curves of genus 0 with N ordered marked points}
= {N ordered marked points on P!}/ PGL,
{(th B tN—3) € AN-3 | ti 7£ tja tj 7£ 07 1}

Mo,

s

Let n:= N — 3. A connected component of Mg n(R) is the simplex

On = {O <t <<t < 1} c R".

Example: N =5, n=2
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A recipe: periods of moduli spaces My y

Examples of period integrals on Mg y:

[T Ta- 5Tl du...dz,
5n J

i<j

for some aj, bj, ¢ j € Z such that the integral converges.
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A recipe: periods of moduli spaces My y

Examples of period integrals on Mg y:
[T TI0 - 0 TG )7 de
On " j i<j
for some a;, bj, ¢;j € Z such that the integral converges.

Theorem (Brown)

The periods of moduli spaces Mo y are Q[27/]-linear combinations of
multiple zeta values of total weight < n= N — 3.
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A recipe: periods of moduli spaces My y

Examples of period integrals on Mg y:
T T - 007 Tt - )% et
On " j i<j
for some a;, bj, ¢;j € Z such that the integral converges.

Theorem (Brown)

The periods of moduli spaces Mg n are Q[27i]-linear combinations of
multiple zeta values of total weight < n= N — 3.

General recipe for linear forms in MZV's

Consider family of convergent integrals

Ie (k) = / few
)

n

where w € Q"(Mg n, Q) is a regular n-form and f € Q°(Mg y, Q).
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In view of irrationality proofs, we want the additional requirement:

@ Vanishing theorems for some of the coefficients aj(-i). J




Vanishing of coefficients

In view of irrationality proofs, we want the additional requirement:

@ Vanishing theorems for some of the coefficients aj(.i).

@ Generic period integral on Mg gives 1, ¢(2) and {(3)...
Get rid of ((2)! Then we obtain exactly the Apéry sequence.
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Vanishing of coefficients

In view of irrationality proofs, we want the additional requirement:

@ Vanishing theorems for some of the coefficients aj(.i).

@ Generic period integral on Mg gives 1, ¢(2) and {(3)...
Get rid of ((2)! Then we obtain exactly the Apéry sequence.

o Ball-Rivoal: "very well-poised hypergeometric series”
= odd zeta values only.
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Vanishing of coefficients

In view of irrationality proofs, we want the additional requirement:

@ Vanishing theorems for some of the coefficients aj(.i)

@ Generic period integral on Mg gives 1, ¢(2) and {(3)...
Get rid of ((2)! Then we obtain exactly the Apéry sequence.

o Ball-Rivoal: "very well-poised hypergeometric series”
= odd zeta values only.

In terms of algebraic geometry: consider the (mixed Tate) motive
HA,B = H"(MO,N \ A, B \ A), where
@ Mo,y is the Deligne-Mumford compactification;

@ A is a divisor where differential forms are allowed to have poles;

@ B is a divisor containing the boundary of the domain of integration.
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Vanishing of coefficients

In view of irrationality proofs, we want the additional requirement:

@ Vanishing theorems for some of the coefficients aj(.i)

@ Generic period integral on Mg gives 1, ¢(2) and {(3)...
Get rid of ((2)! Then we obtain exactly the Apéry sequence.

o Ball-Rivoal: "very well-poised hypergeometric series”
= odd zeta values only.

In terms of algebraic geometry: consider the (mixed Tate) motive
HA,B = H"(MO,N \ A, B \ A), where

@ Mo,y is the Deligne-Mumford compactification;
@ A is a divisor where differential forms are allowed to have poles;

@ B is a divisor containing the boundary of the domain of integration.

Then gr¥¥ Ha g = 0 = vanishing of coefficients a!”

} in weight k.
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Periods and cohomology

For a smooth algebraic variety defined over @, we have:
@ the Betti cohomology groups (singular cohomology) Hg(X);
@ the algebraic de Rham cohomology groups HAR (X);
@ the comparison isomorphism Hf(X) ®g C — HAR (X) ®g C, whose
coefficients are periods. Equivalently: Betti / de Rham pairing.
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Periods and cohomology

For a smooth algebraic variety defined over @, we have:
@ the Betti cohomology groups (singular cohomology) Hg(X);
@ the algebraic de Rham cohomology groups HAR (X);
@ the comparison isomorphism Hf(X) ®g C — HAR (X) ®g C, whose
coefficients are periods. Equivalently: Betti / de Rham pairing.

dz/z
Q(-1) = HY(CY) °y 7 (2mi)
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Periods and cohomology

For a smooth algebraic variety defined over @, we have:
@ the Betti cohomology groups (singular cohomology) Hg(X);
@ the algebraic de Rham cohomology groups HAR (X);
@ the comparison isomorphism Hf(X) ®g C — HAR (X) ®g C, whose
coefficients are periods. Equivalently: Betti / de Rham pairing.

dz/z

Q(—l) _ Hl((C*) Yol Y (27Ti)
dz dz/z
Ko = HY(C*, {1,2}) Q o= :((1) |<2>7g”2)

0— Q(0) —» Ky — Q(— “ramified at 2"
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Mixed Tate motives over Q, over Z ( “non-ramified” )

Category MTM(Q): abelian, rigid tensor category (symmetric, duals),
exact faithful tensor functors wyr,ws : MTM(Q) — Vect (Tannakian)
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Mixed Tate motives over Q, over Z ( “non-ramified” )

Category MTM(Q): abelian, rigid tensor category (symmetric, duals),
exact faithful tensor functors wyr,ws : MTM(Q) — Vect (Tannakian)

e For each n € Z, simple object Q(—n) = Q(—1)®".
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Mixed Tate motives over Q, over Z ( “non-ramified” )

Category MTM(Q): abelian, rigid tensor category (symmetric, duals),
exact faithful tensor functors wyr,ws : MTM(Q) — Vect (Tannakian)

e For each n € Z, simple object Q(—n) = Q(—1)®".
Period matrix: ( (27i)").
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Mixed Tate motives over Q, over Z ( “non-ramified” )

Category MTM(Q): abelian, rigid tensor category (symmetric, duals),
exact faithful tensor functors wyr,ws : MTM(Q) — Vect (Tannakian)

e For each n € Z, simple object Q(—n) = Q(—1)®".
Period matrix: ((27i)"). Effective if n > 0: Q(—n) = H"((C*)").
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Mixed Tate motives over Q, over Z (“non-ramified”)

Category MTM(Q): abelian, rigid tensor category (symmetric, duals),
exact faithful tensor functors wyr,ws : MTM(Q) — Vect (Tannakian)
e For each n € Z, simple object Q(—n) = Q(—1)®".
Period matrix: ((27i)"). Effective if n > 0: Q(—n) = H"((C*)").
e for each a € Q~¢, we have an extension in MTM(Q)

0—-Q0)— K,—>Q(-1)—0

, . (1 loga
Period matrix: (0 27”.>

(Kummer motive, trivial extension iff a = 1)
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Mixed Tate motives over Q, over Z (“non-ramified”)

Category MTM(Q): abelian, rigid tensor category (symmetric, duals),
exact faithful tensor functors wyr,ws : MTM(Q) — Vect (Tannakian)
e For each n € Z, simple object Q(—n) = Q(—1)®".
Period matrix: ((27i)"). Effective if n > 0: Q(—n) = H"((C*)").
e for each a € Q~¢, we have an extension in MTM(Q)

0—-Q0)— K,—>Q(-1)—0

Period matrix: (é Ioga)

27i
(Kummer motive, trivial extension iff a = 1)
@ For n=3,5,7,..., we have a non-trivial extension

0—-Q0)—2Z,—-Q(—n)—0

Period matrix: ((1) (57(1_,3,,)
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Mixed Tate motives over Q, over Z (“non-ramified”)

Category MTM(Q): abelian, rigid tensor category (symmetric, duals),
exact faithful tensor functors wyr,ws : MTM(Q) — Vect (Tannakian)
e For each n € Z, simple object Q(—n) = Q(—1)®".
Period matrix: ((27i)"). Effective if n > 0: Q(—n) = H"((C*)").
e for each a € Q~¢, we have an extension in MTM(Q)

0—-Q0)— K,—>Q(-1)—0

Period matrix: (é Ioga)

27i
(Kummer motive, trivial extension iff a = 1)
@ For n=3,5,7,..., we have a non-trivial extension

0—-Q0)—2Z,—-Q(—n)—0

Period matrix: ((1) (57(1_,3,,)

@ All higher Ext vanish.
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Mixed Tate motives over Q, over Z (“non-ramified”)

Category MTM(Q): abelian, rigid tensor category (symmetric, duals),
exact faithful tensor functors wyr,ws : MTM(Q) — Vect (Tannakian)
e For each n € Z, simple object Q(—n) = Q(—1)®".
Period matrix: ((27i)"). Effective if n > 0: Q(—n) = H"((C*)").
e for each a € Q~¢, we have an extension in MTM(Q)

0—-Q0)— K,—>Q(-1)—0

Period matrix: (é Ioga)

27i
(Kummer motive, trivial extension iff a = 1)
@ For n=3,5,7,..., we have a non-trivial extension

0—-Q0)—2Z,—-Q(—n)—0

Period matrix: ((1) (;(1_,3,,)

@ All higher Ext vanish.
@ In MTM(Z), the extensions K, are not allowed.
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Mixed Tate motives over Q, over Z (“non-ramified”)

Category MTM(Q): abelian, rigid tensor category (symmetric, duals),
exact faithful tensor functors wyr,ws : MTM(Q) — Vect (Tannakian)
e For each n € Z, simple object Q(—n) = Q(—1)®".
Period matrix: ((27i)"). Effective if n > 0: Q(—n) = H"((C*)").
e for each a € Q~¢, we have an extension in MTM(Q)

0—-Q0)— K,—>Q(-1)—0

Period matrix: (é Ioga)

27i
(Kummer motive, trivial extension iff a = 1)
@ For n=3,5,7,..., we have a non-trivial extension

0—-Q0)— 2Z,—Q(—n)—0
- (1 ¢(n)
Period matrix: (O (27“.),,)
@ All higher Ext vanish.

@ In MTM(Z), the extensions K, are not allowed.
e Per(MTM(Z)) = Uy Per(Mo,n) = Q[27i][MZV] = Q[27/][MZ V> 3]
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=25 [T

k>1




dx dy
C(z Z k2 //0<x<y<1 (1 X)y

k>1

IP;2

6 lines, 7 points



Example: ((2)

I e _dxdy
C(2) B k221 k2 /\/0<x<y<1 (1 - X)y

A A
B B
™
blow-up
| T '

o —~ —

P? — P2 =M

6 lines, 7 points 10 lines, 15 points
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Example: ((2)

I e _dxdy
C(2) B k221 k2 /\/0<x<y<1 (1 - X)y

A A
B B
™
blow-up
| T '
]P>2 (ﬂ—— I’PE — mO,S
6 lines, 7 points 10 lines, 15 points
=== . . 1 {2 1 0
e "2(2 . ~
H:=H(P2\ A, B\ A). Period matrix: (0 (27”.)2) (0 (27”.)2)
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A bi-arrangement of hyperplanes is a triple (£, M, x) where
o L ={Ly,...,L;} is a set of hyperplanes in P";
e M ={My,...,M,} is a set of hyperplanes in P";
o x :8 =Flats(AU B) — {\, u} is a coloring function, satisfying
X(Li) = X and x(M;) = p for all i,




Bi-arrangements of hyperplanes

Definition (Dupont 2014)
A bi-arrangement of hyperplanes is a triple (£,M, x) where
o L={Ly,...,L;} is a set of hyperplanes in P";
@ M = {My,...,Mp,} is a set of hyperplanes in P”;
@ x :8 =Flats(AU B) — {\, u} is a coloring function, satisfying
x(Li) = X and x(M;) = p for all i,

Definition (Dupont 2014)

The motive of the bi-arrangement of hyperplanes (£, M, x) is the
collection of relative cohomology groups (mixed Hodge structures)

He (P \ £, M\ £) .
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Bi-arrangements of hyperplanes

Definition (Dupont 2014)
A bi-arrangement of hyperplanes is a triple (£,M, x) where
o L={Ly,...,L;} is a set of hyperplanes in P";
@ M = {My,...,Mp,} is a set of hyperplanes in P”;
@ x :8 =Flats(AU B) — {\, u} is a coloring function, satisfying
x(Li) = X and x(M;) = p for all i,

Definition (Dupont 2014)

The motive of the bi-arrangement of hyperplanes (£, M, x) is the
collection of relative cohomology groups (mixed Hodge structures)

He (P \ £, M\ £) .

Inspired by (Aomoto 1977, 1982) and
(Beilinson-Goncharov-Schechtman-Varchenko, 1989).
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We define the Orlik-Solomon bicomplex Ae o« = Ae.o(L, M, x):

d/
----------- > Ap o —> A1 0 —— Ao
% l ld”
A S > A1 — Ao
LS > Ao
v




The Orlik-Solomon bicomplex

Definition
We define the Orlik-Solomon bicomplex Ae o = Ae.o(L, M, X):

d/
> Ao —> A1 0 —— Aopo

Lk

z= A1,1 — Ao,l

|

> Ap2

We define A; j = @ A;g’j and the differentials d’ and d” by induction
Y
on the codimension i/ + j. Here Sy = flats of codimension k.
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Base step of the induction : Ago = Q.




The Orlik-Solomon bicomplex

Base step of the induction : Ago = Q.

Inductive step :
@ For a flat X such that x(X) = ), we define A}_J as a kernel:

y d s d T
0— AL S PAL, S DAL,
SOY TOX
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The Orlik-Solomon bicomplex

Base step of the induction : Ago = Q.

Inductive step :
@ For a flat X such that x(X) = ), we define A;- as a kernel:

0— A%, %@A, 1 @A, 0 -

5O% ToF
@ For a flat X such that x(X) = y, we define A as a cokernel:

0 AL L D aAs, 1<—€BA,J 5.

SOY TOx
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The Orlik-Solomon bicomplex

Base step of the induction : Ago = Q.

Inductive step :
@ For a flat X such that x(X) = ), we define A?:- as a kernel:

0— A%, %@A, 1 @A, 0 -

5O% ToF
@ For a flat X such that x(X) = y, we define A as a cokernel:

0 AL LD As, 1<—@A,J 5.

S$O% TDOX
@ In any case, we complete the squares by the universal property.
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The Orlik-Solomon bicomplex

Base step of the induction : Ago = Q.

Inductive step :
@ For a flat X such that x(X) = ), we define A?:- as a kernel:

0— A%, %@A, 1 @A, 0 -

5O% ToF
@ For a flat X such that x(X) = y, we define A as a cokernel:

0 AL LD As, 1<—@A,J 5.

S$O% TDOX
@ In any case, we complete the squares by the universal property.

Hence we use:

@ KernelObject, KernelMorphism, KernelLift and dual versions,

Daniel Juteau (IMJ-PRG: CNRS, Paris 7) Motives, algorithms and programming



The Orlik-Solomon bicomplex

Base step of the induction : Ago = Q.

Inductive step :
@ For a flat X such that x(X) = ), we define A?:- as a kernel:

0— A%, %@A, 1 @A, 0 -

5O% ToF
@ For a flat X such that x(X) = y, we define A as a cokernel:

0 AL LD As, 1<—@A,J 5.

S$O% TDOX
@ In any case, we complete the squares by the universal property.

Hence we use:
@ KernelObject, KernelMorphism, KernelLift and dual versions,

@ MorphismBetweenDirectSums,
ComponentOfMorphismIntoDirectSum,
ComponentOfMorphismFromDirectSum. ..
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P codim 2
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Aé{o = Q
A= 45 =)

Aly=0Q d/f"* = (1)
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Ao,o

Q2(1_1)>Q

P codim 2
RN
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N |/
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codim1

codim0

Alp=Q dg" = (1)

Ao =Q d/g" = (1)



P codim 2

L, Ly Ly M codim1
M X codim0
ASE
1
(;1), Qz (1_1), Q Aéo =Q
) Ay =0 At = (1)
Q w Q AQ/,’O =Q d{/,OMX = (1)
ALo=Q dyg”=(1) dyg"=(-1)
Al =Q d7F=(1)




Example

Ly
Ly P
M
At
(11)l l(l)
Qw’@
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P codim 2
Ly Ly M codim1
X codim0
A%y =Q
Alo=Q d5" =(1)
Alh=Q %= ()
Ao =Q dyg” = (1) dhg" = (1)

Ail = Q d{{\{”P = (]_

Motives, algorithms and programming



A bi-arrangement of hyperplanes (£, M, x) is exact if the above exact
sequences can be continued to long exact sequences

0— AL —>@A51J EBA, 2,1

ST TOX

or

04_'A? GEB/LJ ld” GEB'AM 2

SO% TOX




Exactness

Definition
A bi-arrangement of hyperplanes (£, M, x) is exact if the above exact
sequences can be continued to long exact sequences

0 — A¥; —>@A,_1] @A, S

Sox TOY
or
0-AR L Pas  EPal, L
«— <_ ij— 15 ij—2 A
SOy TO%
Remark

— All arrangements of hyperplanes (A, @, \) are exact,
Auo(A, @, 1) = Ad(A).
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Exactness

Definition
A bi-arrangement of hyperplanes (£, M, x) is exact if the above exact
sequences can be continued to long exact sequences

0 — A¥; %@A,_lj @A, S

Sox TOY
or
0-AR L Pas  EPal, L
«— <_ ij— 15 ij—2 A
SOy TO%
Remark

— All arrangements of hyperplanes (A, @, \) are exact,
Aeo(A, 2, ) = As(A).

— Deletion and restriction formalism for exact bi-arrangements of
hyperplanes.
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For an exact bi-arrangement of hyperplanes (£, M, x) in P", “the
Orlik-Solomon bicomplex Aq o (£, M, x) computes the motive
He (L, M, x)".




The main theorem

Theorem (Dupont 2014)

For an exact bi-arrangement of hyperplanes (£, M, x) in P", “the
Orlik-Solomon bicomplex Aq o (£, M, x) computes the motive
H* (L, M, x)". More precisely, for each k =0,...,n:

@ we consider the double complex Ap<e<k,0<e<n—k;
o we let WA, be its total complex ;
o then gr¥V H"(L,M, x) = Hak—,(VA,)
(W = the weight filtration coming from mixed Hodge theory).
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The main theorem

Theorem (Dupont 2014)

For an exact bi-arrangement of hyperplanes (£, M, x) in P", “the
Orlik-Solomon bicomplex Aq o (£, M, x) computes the motive
H* (L, M, x)". More precisely, for each k =0,...,n:

@ we consider the double complex Ap<e<k,0<e<n—k;
o we let WA, be its total complex ;
o then gr¥V H"(L,M, x) = Hak—,(VA,)
(W = the weight filtration coming from mixed Hodge theory).

Remark

@ For arrangements of hyperplanes, we recover the (projective)
Brieskorn-Orlik-Solomon theorem, with only weight gr,, H.
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The main theorem

Theorem (Dupont 2014)

For an exact bi-arrangement of hyperplanes (£, M, x) in P", “the
Orlik-Solomon bicomplex Aq o (£, M, x) computes the motive
H* (L, M, x)". More precisely, for each k =0,...,n:
@ we consider the double complex Ap<e<k,0<e<n—k;
o we let WA, be its total complex ;
o then gr¥V H"(L,M, x) = Hak—,(VA,)
(W = the weight filtration coming from mixed Hodge theory).

Remark

@ For arrangements of hyperplanes, we recover the (projective)
Brieskorn-Orlik-Solomon theorem, with only weight gr,, H.

@ The weight-graded quotients gryy H*(£,M, x) are combinatorial
invariants, but not the whole motive H*(£, M, x).
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Combinatorial notion of tame bi-arrangements of hyperplanes.
— Generic bi-arrangements are tame
— tame = exact.




Explicit computations: the tame case

Combinatorial notion of tame bi-arrangements of hyperplanes.
— Generic bi-arrangements are tame

— tame —> exact.

Proposition

For a tame bi-arrangement of hyperplanes (£,M, x), the Orlik-Solomon
bicomplex Aq o (£, M, X) is an explicit sub-quotient of As(L) @ Ae(M)".
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Explicit computations: the tame case

Combinatorial notion of tame bi-arrangements of hyperplanes.
— Generic bi-arrangements are tame

— tame —> exact.

Proposition

For a tame bi-arrangement of hyperplanes (£,M, x), the Orlik-Solomon
bicomplex Aq o (£, M, X) is an explicit sub-quotient of As(L) @ Ae(M)".

Example
Ly
L2 P Ao,o = /\.(61, 62) X /\.(flv)/(d(el A 62) ® f1V)
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Explicit computations: the tame case

Combinatorial notion of tame bi-arrangements of hyperplanes.
— Generic bi-arrangements are tame

— tame —> exact.

Proposition

For a tame bi-arrangement of hyperplanes (£,M, x), the Orlik-Solomon
bicomplex Aq o (£, M, X) is an explicit sub-quotient of As(L) @ Ae(M)".

Example
L
5 £ Ao = N(er, @) © A(EY)/(d(er A e2) @ )
M
Example
One can define multiple zeta bi-arrangements Z(ny, ..., n,) that are
tame.
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Basic cellular integrals

Given a permutation o € &y, define on PN\ J{z; = z;}:

- Zi — Zj41 dz;...dzy

fr =

—— " and &, =
iezing Zo(i) — Zo(i+1) H (ZU(,') - zo(i+1))
i€Z/NZ

)

both PGLy-invariant, hence we get f, € O(Mo n), and w, € Q"(Mo n)
after dividing by an invariant volume form on PGL,.
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Basic cellular integrals

Given a permutation o € &y, define on PN\ J{z; = z;}:

and @, = dz;...dzy

iczjnz 2ol T Zoli+1) H (Zo(iy = Zo(it1))
i€Z/NZ

3 Zi — Zi+1
fr =

)

both PGLy-invariant, hence we get f, € O(Mo n), and w, € Q"(Mo n)
after dividing by an invariant volume form on PGL,.

Basic cellular integral:

I,(k) = / frw,
6n

It converges iff o is a convergent permutation (“dinner party problem™).
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Basic cellular integrals

Given a permutation o € &y, define on PN\ J{z; = z;}:
Faz H Zi — Zj41 and @, = dz;...dzy
iczjnz 2ol T Zoli+1) H (Zo(iy = Zo(it1))
i€Z/NZ

)

both PGLy-invariant, hence we get f, € O(Mo n), and w, € Q"(Mo n)
after dividing by an invariant volume form on PGL,.

Basic cellular integral:

I,(k) = / frw,
6n

It converges iff o is a convergent permutation (“dinner party problem™).

Number of convergent configurations, up to dihedral symmetries:

N|[4 567 8 9 10 11
Cy|[0 1 1 5 17 105 771 7028
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Basic cellular integrals

Given a permutation o € &y, define on PN\ J{z; = z;}:
ng H Zi — Zj41 and @, = dz;...dzy
iczjnz 2ol T Zoli+1) H (Zo(iy = Zo(it1))
i€Z/NZ

)

both PGLy-invariant, hence we get f, € O(Mo n), and w, € Q"(Mo n)
after dividing by an invariant volume form on PGL,.

Basic cellular integral:

I,(k) = / frw,
6n

It converges iff o is a convergent permutation (“dinner party problem™).

Number of convergent configurations, up to dihedral symmetries:

N|[4 567 8 9 10 11
Cy|[0 1 1 5 17 105 771 7028

N =5: only sm = [5,2,4,1, 3], N =6: only gm = [6,2,4,1,5,3]
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Suppose that A, B C Mo, n are cellular boundary divisors with no
common irreducible components. Let n = N — 3. Then

gry' Hag =gryy oHas =0

and gry¥ Ha g and gry¥ Ha g are both 1-dimensional.




Vanishing for basic cellular integrals

Theorem (Brown 2016)

Suppose that A, B C Mo y are cellular boundary divisors with no
common irreducible components. Let n = N — 3. Then

gry' Hag =gry,_oHag =0

and gr(‘)/v Ha g and gr% Ha g are both 1-dimensional.

Hence for the unique convergent configurations for N = 5,6, we must
have

W _ Q0)®Q(-2) for N =5,
&e TAE =1 0(0) @ Q(~3) for N = 6.
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Vanishing for basic cellular integrals

Theorem (Brown 2016)

Suppose that A, B C Mo y are cellular boundary divisors with no
common irreducible components. Let n = N — 3. Then

gry’ Hapg =gryn_oHap =0

and gr(‘)/v Ha g and gr% Ha g are both 1-dimensional.

Hence for the unique convergent configurations for N = 5,6, we must
have

W, Q0)®Q(-2) for N =5,
e TAE =1 Q0) @ Q(—3) for N =6.

Those are the Apéry motives! They give the linear combinations of 1 and

¢(2) for N =5, resp. 1 and ((3) for N = 6, used in the irrationality
proofs.
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Flat poset for ((2)

35 may be set red or blue
morphism red — blue

KernelObjectFunctorial
TotalComplexFunctorial

Take the image!

Irrelevant for ((2):
101 - 101 — 101
Relevant for ¢(3):

1011 — 1001 — 1101
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Two dual pairs and one self-dual configuration:

771 = [7 2,4,1,6,3,5] — 77T]Y = [7,2
7Ty = [7 2,4,6, 73,5] — 77T¥ = [7,3
773 = [7a27 57 173:634] = 77!'%/




Two dual pairs and one self-dual configuration:

71 = [7a274a 1a673,5] — 77T]Y = [7,2, 5 1
7Ty = [7,2,4,6, 1,3,5] — 77T¥ = [7,3,6,2, 9 dbo
73 = [7327 5, 173a6a4] = 771':},/

Experimentally, all give linear combinations of 1, ¢(2) and ¢(4).




More basic cellular integrals

N=7

Two dual pairs and one self-dual configuration:
7m =1[7,2,4,1,6,3,5] +— 7w/ =[7,2,5,1,4,6,3]
7m2 =[7,2,4,6,1,3,5] +— 7my =[7,3,6,2,5,1,4]

773 = [77 2a 5a 17 37 67 4] = 77T§/
Experimentally, all give linear combinations of 1, ¢(2) and ¢(4).

With MotivesForBiarrangements, based on CAP, we can confirm:

grd/ Has = Q(0) ® Q(—2) ® Q(—4)
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More basic cellular integrals

N=7

Two dual pairs and one self-dual configuration:

773 = [772a5a 1737674] = 77T:\’,/

Experimentally, all give linear combinations of 1, ¢(2) and ¢(4).

With MotivesForBiarrangements, based on CAP, we can confirm:

grd/ Has = Q(0) ® Q(—2) ® Q(—4)

N=38

Among the 17 convergent configurations, let us note

878 — [8a275> 17674’a773] — 87r§/ = [872’47 1’775’3’6]
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More basic cellular integrals

N=7

Two dual pairs and one self-dual configuration:
7m =1[7,2,4,1,6,3,5] +— 7m =][7,2,5,1,4,6,3]
7m2 =[7,2,4,6,1,3,5] «— 7my =[7,3,6,2,5,1,4]

773 = [772a5a 1737674] = 77T:\’,/

Experimentally, all give linear combinations of 1, ¢(2) and ¢(4).
With MotivesForBiarrangements, based on CAP, we can confirm:

grd/ Has = Q(0) ® Q(—2) ® Q(—4)

N=38

Among the 17 convergent configurations, let us note
8Ts = [8,2,5,1,6,4,7,3] +— g1y = [8,2,4,1,7,5,3,6]

With MotivesForBiarrangements, based on CAP, we can confirm:
_ {@(O) ®Q(-3) ® Q(-5) for g7,

w
gr HA,B Q(O) ® Q(_2) fast Q(—S) for 871'%/-
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