Motives, algorithms and programming

Daniel Juteau
Institut de Mathématiques de Jussieu - Paris Rive Gauche: CNRS, Sorbonne Université ${ }^{1}$, Université Paris 7 Denis Diderot ${ }^{2}$

CAP days, Siegen, 28.08.2018

mathematics: following F. Brown (Oxford), C. Dupont (Montpellier)
programming: joint with C. Dupont (Montpellier), M. Barakat (Siegen) and kind \& efficient support from the CAP team!

[^0]
Zeta values

$$
\zeta(n):=\sum_{k \geq 1} \frac{1}{k^{n}} \quad(n \geq 2)
$$

Zeta values

$$
\zeta(n):=\sum_{k \geq 1} \frac{1}{k^{n}} \quad(n \geq 2)
$$

Euler:

$$
\sum_{n=0}^{\infty} \zeta(2 n) z^{2 n}=-\frac{\pi z}{2} \cot (\pi z)=-\frac{1}{2}+\frac{\pi^{2}}{6} z^{2}+\frac{\pi^{4}}{90} z^{4}+\frac{\pi^{6}}{945} z^{6}+\ldots
$$

Zeta values

$$
\zeta(n):=\sum_{k \geq 1} \frac{1}{k^{n}} \quad(n \geq 2)
$$

Euler:

$$
\sum_{n=0}^{\infty} \zeta(2 n) z^{2 n}=-\frac{\pi z}{2} \cot (\pi z)=-\frac{1}{2}+\frac{\pi^{2}}{6} z^{2}+\frac{\pi^{4}}{90} z^{4}+\frac{\pi^{6}}{945} z^{6}+\ldots
$$

Folklore conjecture
$\pi, \zeta(3), \zeta(5), \zeta(7), \ldots$ are algebraically independent over \mathbb{Q}.

Zeta values

$$
\zeta(n):=\sum_{k \geq 1} \frac{1}{k^{n}} \quad(n \geq 2)
$$

Euler:

$$
\sum_{n=0}^{\infty} \zeta(2 n) z^{2 n}=-\frac{\pi z}{2} \cot (\pi z)=-\frac{1}{2}+\frac{\pi^{2}}{6} z^{2}+\frac{\pi^{4}}{90} z^{4}+\frac{\pi^{6}}{945} z^{6}+\ldots
$$

Folklore conjecture
$\pi, \zeta(3), \zeta(5), \zeta(7), \ldots$ are algebraically independent over \mathbb{Q}.

Known facts

(1) π is transcendental (Lindemann 1882)

Zeta values

$$
\zeta(n):=\sum_{k \geq 1} \frac{1}{k^{n}} \quad(n \geq 2)
$$

Euler:

$$
\sum_{n=0}^{\infty} \zeta(2 n) z^{2 n}=-\frac{\pi z}{2} \cot (\pi z)=-\frac{1}{2}+\frac{\pi^{2}}{6} z^{2}+\frac{\pi^{4}}{90} z^{4}+\frac{\pi^{6}}{945} z^{6}+\ldots
$$

Folklore conjecture
$\pi, \zeta(3), \zeta(5), \zeta(7), \ldots$ are algebraically independent over \mathbb{Q}.

Known facts

(1) π is transcendental (Lindemann 1882)
(2) $\zeta(3)$ is irrational (Apéry 1978)

Zeta values

$$
\zeta(n):=\sum_{k \geq 1} \frac{1}{k^{n}} \quad(n \geq 2)
$$

Euler:

$$
\sum_{n=0}^{\infty} \zeta(2 n) z^{2 n}=-\frac{\pi z}{2} \cot (\pi z)=-\frac{1}{2}+\frac{\pi^{2}}{6} z^{2}+\frac{\pi^{4}}{90} z^{4}+\frac{\pi^{6}}{945} z^{6}+\ldots
$$

Folklore conjecture
$\pi, \zeta(3), \zeta(5), \zeta(7), \ldots$ are algebraically independent over \mathbb{Q}.

Known facts

(1) π is transcendental (Lindemann 1882)
(2) $\zeta(3)$ is irrational (Apéry 1978)
(3) $\operatorname{dim}_{\mathbb{Q}}\langle\zeta(3), \zeta(5), \zeta(7), \ldots\rangle_{\mathbb{Q}}=\infty($ Ball-Rivoal 2000)

Zeta values

$$
\zeta(n):=\sum_{k \geq 1} \frac{1}{k^{n}} \quad(n \geq 2)
$$

Euler:

$$
\sum_{n=0}^{\infty} \zeta(2 n) z^{2 n}=-\frac{\pi z}{2} \cot (\pi z)=-\frac{1}{2}+\frac{\pi^{2}}{6} z^{2}+\frac{\pi^{4}}{90} z^{4}+\frac{\pi^{6}}{945} z^{6}+\ldots
$$

Folklore conjecture
$\pi, \zeta(3), \zeta(5), \zeta(7), \ldots$ are algebraically independent over \mathbb{Q}.

Known facts

(1) π is transcendental (Lindemann 1882)
(2) $\zeta(3)$ is irrational (Apéry 1978)
(3) $\operatorname{dim}_{\mathbb{Q}}\langle\zeta(3), \zeta(5), \zeta(7), \ldots\rangle_{\mathbb{Q}}=\infty$ (Ball-Rivoal 2000)
(0) at least one of $\zeta(5), \zeta(7), \zeta(9), \zeta(11)$ is irrational (Zudilin 2004)

Multiple zeta values

For $\left(n_{1}, \ldots, n_{r}\right) \in \mathbb{Z}^{r}$ with all $n_{i} \geq 1$ and $n_{r} \geq 2$,

$$
\zeta\left(n_{1}, \ldots, n_{r}\right)=\sum_{1 \leq k_{1}<\cdots<k_{r}} \frac{1}{k_{1}^{n_{1}} \ldots k_{r}^{n_{r}}} .
$$

Its weight is $n=n_{1}+\cdots+n_{r}$. MZV's span a \mathbb{Q}-algebra z.

Multiple zeta values

For $\left(n_{1}, \ldots, n_{r}\right) \in \mathbb{Z}^{r}$ with all $n_{i} \geq 1$ and $n_{r} \geq 2$,

$$
\zeta\left(n_{1}, \ldots, n_{r}\right)=\sum_{1 \leq k_{1}<\cdots<k_{r}} \frac{1}{k_{1}^{n_{1}} \ldots k_{r}^{n_{r}}} .
$$

Its weight is $n=n_{1}+\cdots+n_{r}$. MZV's span a \mathbb{Q}-algebra z. Experiments:

n	2	3	4	5	6	7	8	9	10	11	12	13
2^{n-2}	1	2	4	8	16	32	64	128	256	512	1024	2048
$d_{n}^{\exp }$	1	1	1	2	2	3	4	5	7	9	12	16

Multiple zeta values

For $\left(n_{1}, \ldots, n_{r}\right) \in \mathbb{Z}^{r}$ with all $n_{i} \geq 1$ and $n_{r} \geq 2$,

$$
\zeta\left(n_{1}, \ldots, n_{r}\right)=\sum_{1 \leq k_{1}<\cdots<k_{r}} \frac{1}{k_{1}^{n_{1}} \cdots k_{r}^{n_{r}}} .
$$

Its weight is $n=n_{1}+\cdots+n_{r}$. MZV's span a \mathbb{Q}-algebra Z. Experiments:

n	2	3	4	5	6	7	8	9	10	11	12	13
2^{n-2}	1	2	4	8	16	32	64	128	256	512	1024	2048
$d_{n}^{\exp }$	1	1	1	2	2	3	4	5	7	9	12	16

Conjecture (Zagier)

- If z_{n} is the span of MZV's of weight n, then $Z=\bigoplus_{n \geq 0} z_{n}$

Multiple zeta values

For $\left(n_{1}, \ldots, n_{r}\right) \in \mathbb{Z}^{r}$ with all $n_{i} \geq 1$ and $n_{r} \geq 2$,

$$
\zeta\left(n_{1}, \ldots, n_{r}\right)=\sum_{1 \leq k_{1}<\cdots<k_{r}} \frac{1}{k_{1}^{n_{1}} \cdots k_{r}^{n_{r}}} .
$$

Its weight is $n=n_{1}+\cdots+n_{r}$. MZV's span a \mathbb{Q}-algebra Z. Experiments:

n	2	3	4	5	6	7	8	9	10	11	12	13
2^{n-2}	1	2	4	8	16	32	64	128	256	512	1024	2048
$d_{n}^{\exp }$	1	1	1	2	2	3	4	5	7	9	12	16

Conjecture (Zagier)

- If z_{n} is the span of MZV's of weight n, then $Z=\bigoplus_{n \geq 0} z_{n}$
- $\operatorname{dim}_{\mathbb{Q}} z_{n}=d_{n}$, where $\sum_{n \geq 0} d_{n} t^{n}=\frac{1}{1-t^{2}-t^{3}}$, i.e. $d_{0}=1, d_{1}=0, d_{2}=1$, and $d_{n}=d_{n-2}+d_{n-3}$ for $n \geq 3$.

Multiple zeta values

For $\left(n_{1}, \ldots, n_{r}\right) \in \mathbb{Z}^{r}$ with all $n_{i} \geq 1$ and $n_{r} \geq 2$,

$$
\zeta\left(n_{1}, \ldots, n_{r}\right)=\sum_{1 \leq k_{1}<\cdots<k_{r}} \frac{1}{k_{1}^{n_{1}} \ldots k_{r}^{n_{r}}} .
$$

Its weight is $n=n_{1}+\cdots+n_{r}$. MZV's span a \mathbb{Q}-algebra Z. Experiments:

n	2	3	4	5	6	7	8	9	10	11	12	13
2^{n-2}	1	2	4	8	16	32	64	128	256	512	1024	2048
$d_{n}^{\exp }$	1	1	1	2	2	3	4	5	7	9	12	16

Conjecture (Zagier)

- If z_{n} is the span of MZV's of weight n, then $Z=\bigoplus_{n \geq 0} z_{n}$
- $\operatorname{dim}_{\mathbb{Q}} z_{n}=d_{n}$, where $\sum_{n \geq 0} d_{n} t^{n}=\frac{1}{1-t^{2}-t^{3}}$, i.e. $d_{0}=1, d_{1}=0, d_{2}=1$, and $d_{n}=d_{n-2}+d_{n-3}$ for $n \geq 3$.
- Many relations, but graded dimension is predictable.
- Linear (in)dependence is easier than algebraic independence.

Structure of irrationality proofs

Strategy

- Fix MZV's $\zeta_{1}, \ldots, \zeta_{k}$. Suppose we have:

Structure of irrationality proofs

Strategy

- Fix MZV's $\zeta_{1}, \ldots, \zeta_{k}$. Suppose we have:
(1) for all $n \geq 0$, a non-zero \mathbb{Q}-linear combination

$$
I_{n}=a_{n}^{(1)} \zeta_{1}+\cdots+a_{n}^{(k)} \zeta_{k},
$$

where $a_{n}^{(i)} \in \mathbb{Q}$;

Structure of irrationality proofs

Strategy

- Fix MZV's $\zeta_{1}, \ldots, \zeta_{k}$. Suppose we have:
(1) for all $n \geq 0$, a non-zero \mathbb{Q}-linear combination

$$
I_{n}=a_{n}^{(1)} \zeta_{1}+\cdots+a_{n}^{(k)} \zeta_{k}
$$

where $a_{n}^{(i)} \in \mathbb{Q}$;
(2) a bound on the linear forms I_{n}, e.g. find a small $\varepsilon>0$ such that

$$
0<I_{n}<\varepsilon^{n}
$$

Structure of irrationality proofs

Strategy

- Fix MZV's $\zeta_{1}, \ldots, \zeta_{k}$. Suppose we have:
(1) for all $n \geq 0$, a non-zero \mathbb{Q}-linear combination

$$
I_{n}=a_{n}^{(1)} \zeta_{1}+\cdots+a_{n}^{(k)} \zeta_{k}
$$

where $a_{n}^{(i)} \in \mathbb{Q}$;
(2) a bound on the linear forms I_{n}, e.g. find a small $\varepsilon>0$ such that

$$
0<I_{n}<\varepsilon^{n}
$$

(3) some control on the coefficients $a_{n}^{(k)}$, e.g. find r such that

$$
D_{n}^{r} a_{n}^{(k)} \in \mathbb{Z}, \text { where } D_{n}=\operatorname{lcm}(1,2, \ldots, n)
$$

Structure of irrationality proofs

Strategy

- Fix MZV's $\zeta_{1}, \ldots, \zeta_{k}$. Suppose we have:
(1) for all $n \geq 0$, a non-zero \mathbb{Q}-linear combination

$$
I_{n}=a_{n}^{(1)} \zeta_{1}+\cdots+a_{n}^{(k)} \zeta_{k}
$$

where $a_{n}^{(i)} \in \mathbb{Q}$;
(2) a bound on the linear forms I_{n}, e.g. find a small $\varepsilon>0$ such that

$$
0<I_{n}<\varepsilon^{n}
$$

(3) some control on the coefficients $a_{n}^{(k)}$, e.g. find r such that

$$
D_{n}^{r} a_{n}^{(k)} \in \mathbb{Z}, \text { where } D_{n}=\operatorname{lcm}(1,2, \ldots, n)
$$

Note: prime number theorem $\Longrightarrow \lim _{n \rightarrow \infty} D_{n}^{1 / n}=e$.

Structure of irrationality proofs

Strategy

- Fix MZV's $\zeta_{1}, \ldots, \zeta_{k}$. Suppose we have:
(1) for all $n \geq 0$, a non-zero \mathbb{Q}-linear combination

$$
I_{n}=a_{n}^{(1)} \zeta_{1}+\cdots+a_{n}^{(k)} \zeta_{k}
$$

where $a_{n}^{(i)} \in \mathbb{Q}$;
(2) a bound on the linear forms I_{n}, e.g. find a small $\varepsilon>0$ such that

$$
0<I_{n}<\varepsilon^{n} ;
$$

(3) some control on the coefficients $a_{n}^{(k)}$, e.g. find r such that

$$
D_{n}^{r} a_{n}^{(k)} \in \mathbb{Z}, \text { where } D_{n}=\operatorname{lcm}(1,2, \ldots, n)
$$

Note: prime number theorem $\Longrightarrow \lim _{n \rightarrow \infty} D_{n}^{1 / n}=e$.

- Now assume $\zeta_{1}, \ldots, \zeta_{k} \in \mathbb{Q}$, say in $\frac{1}{q} \mathbb{Z}$.

Structure of irrationality proofs

Strategy

- Fix MZV's $\zeta_{1}, \ldots, \zeta_{k}$. Suppose we have:
(1) for all $n \geq 0$, a non-zero \mathbb{Q}-linear combination

$$
I_{n}=a_{n}^{(1)} \zeta_{1}+\cdots+a_{n}^{(k)} \zeta_{k}
$$

where $a_{n}^{(i)} \in \mathbb{Q}$;
(2) a bound on the linear forms I_{n}, e.g. find a small $\varepsilon>0$ such that

$$
0<I_{n}<\varepsilon^{n}
$$

(3) some control on the coefficients $a_{n}^{(k)}$, e.g. find r such that

$$
D_{n}^{r} a_{n}^{(k)} \in \mathbb{Z}, \text { where } D_{n}=\operatorname{Icm}(1,2, \ldots, n)
$$

Note: prime number theorem $\Longrightarrow \lim _{n \rightarrow \infty} D_{n}^{1 / n}=e$.

- Now assume $\zeta_{1}, \ldots, \zeta_{k} \in \mathbb{Q}$, say in $\frac{1}{q} \mathbb{Z}$. Then

$$
q D_{n}^{r} I_{n} \geq 1, \text { hence } e^{r} \varepsilon \geq 1
$$

Structure of irrationality proofs

Strategy

- Fix MZV's $\zeta_{1}, \ldots, \zeta_{k}$. Suppose we have:
(1) for all $n \geq 0$, a non-zero \mathbb{Q}-linear combination

$$
I_{n}=a_{n}^{(1)} \zeta_{1}+\cdots+a_{n}^{(k)} \zeta_{k}
$$

where $a_{n}^{(i)} \in \mathbb{Q}$;
(2) a bound on the linear forms I_{n}, e.g. find a small $\varepsilon>0$ such that

$$
0<I_{n}<\varepsilon^{n} ;
$$

(3) some control on the coefficients $a_{n}^{(k)}$, e.g. find r such that

$$
D_{n}^{r} a_{n}^{(k)} \in \mathbb{Z}, \text { where } D_{n}=\operatorname{lcm}(1,2, \ldots, n)
$$

Note: prime number theorem $\Longrightarrow \lim _{n \rightarrow \infty} D_{n}^{1 / n}=e$.

- Now assume $\zeta_{1}, \ldots, \zeta_{k} \in \mathbb{Q}$, say in $\frac{1}{q} \mathbb{Z}$. Then

$$
q D_{n}^{r} I_{n} \geq 1, \text { hence } e^{r} \varepsilon \geq 1
$$

Contradiction if r and ε are sufficiently small, so that $e^{r} \varepsilon<1$.

Irrationality of $\zeta(3)$

Beuker's integral:

$$
\begin{aligned}
I_{n} & =\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{x^{n}(1-x)^{n} y^{n}(1-y)^{n} z^{n}(1-z)^{n}}{(1-(1-x y) z)^{n+1}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \\
& =a_{n} \zeta(3)+b_{n}
\end{aligned}
$$

with $a_{n} \in \mathbb{Z}$ and $D_{n}^{3} b_{n} \in \mathbb{Z}$, bounded by

$$
0<I_{n}<\varepsilon^{n}, \quad \varepsilon=(\sqrt{2}-1)^{4} .
$$

Irrationality of $\zeta(3)$

Beuker's integral:

$$
\begin{aligned}
I_{n} & =\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{x^{n}(1-x)^{n} y^{n}(1-y)^{n} z^{n}(1-z)^{n}}{(1-(1-x y) z)^{n+1}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \\
& =a_{n} \zeta(3)+b_{n}
\end{aligned}
$$

with $a_{n} \in \mathbb{Z}$ and $D_{n}^{3} b_{n} \in \mathbb{Z}$, bounded by

$$
0<I_{n}<\varepsilon^{n}, \quad \varepsilon=(\sqrt{2}-1)^{4} .
$$

Numerical application:

$$
e^{3} \varepsilon=0.591 \cdots<1,
$$

Irrationality of $\zeta(3)$

Beuker's integral:

$$
\begin{aligned}
I_{n} & =\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{x^{n}(1-x)^{n} y^{n}(1-y)^{n} z^{n}(1-z)^{n}}{(1-(1-x y) z)^{n+1}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \\
& =a_{n} \zeta(3)+b_{n}
\end{aligned}
$$

with $a_{n} \in \mathbb{Z}$ and $D_{n}^{3} b_{n} \in \mathbb{Z}$, bounded by

$$
0<I_{n}<\varepsilon^{n}, \quad \varepsilon=(\sqrt{2}-1)^{4} .
$$

Numerical application:

$$
e^{3} \varepsilon=0.591 \cdots<1,
$$

hence $\zeta(3)$ is irrational!
$\mathcal{M}_{0, N}=$ \{curves of genus 0 with N ordered marked points\}
$=\left\{N\right.$ ordered marked points on $\left.\mathbb{P}^{1}\right\} / \mathrm{PGL}_{2}$
$=\left\{\left(t_{1}, \ldots, t_{N-3}\right) \in \mathbb{A}^{N-3} \mid t_{i} \neq t_{j}, t_{i} \neq 0,1\right\}$

$$
\begin{aligned}
\mathcal{M}_{0, N} & =\{\text { curves of genus } 0 \text { with } N \text { ordered marked points }\} \\
& =\left\{N \text { ordered marked points on } \mathbb{P}^{1}\right\} / \mathrm{PGL}_{2} \\
& =\left\{\left(t_{1}, \ldots, t_{N-3}\right) \in \mathbb{A}^{N-3} \mid t_{i} \neq t_{j}, t_{i} \neq 0,1\right\}
\end{aligned}
$$

Let $n:=N-3$. A connected component of $\mathcal{M}_{0, N}(\mathbb{R})$ is the simplex

$$
\delta_{n}=\left\{0<t_{1}<\cdots<t_{n}<1\right\} \subset \mathbb{R}^{n} .
$$

The moduli space $\mathcal{M}_{0, N}$

$$
\begin{aligned}
\mathcal{M}_{0, N} & =\{\text { curves of genus } 0 \text { with } N \text { ordered marked points }\} \\
& =\left\{N \text { ordered marked points on } \mathbb{P}^{1}\right\} / \mathrm{PGL}_{2} \\
& =\left\{\left(t_{1}, \ldots, t_{N-3}\right) \in \mathbb{A}^{N-3} \mid t_{i} \neq t_{j}, t_{i} \neq 0,1\right\}
\end{aligned}
$$

Let $n:=N-3$. A connected component of $\mathcal{M}_{0, N}(\mathbb{R})$ is the simplex

$$
\delta_{n}=\left\{0<t_{1}<\cdots<t_{n}<1\right\} \subset \mathbb{R}^{n} .
$$

Example: $N=5, n=2$

A recipe: periods of moduli spaces $\mathcal{M}_{0, N}$

Examples of period integrals on $\mathcal{M}_{0, N}$:

$$
\int_{\delta_{n}} \prod_{i} t_{i}^{a_{i}} \prod_{j}\left(1-t_{j}\right)^{b_{j}} \prod_{i<j}\left(t_{i}-t_{j}\right)^{c_{i, j}} \mathrm{~d} t_{1} \ldots \mathrm{~d} t_{n}
$$

for some $a_{i}, b_{j}, c_{i, j} \in \mathbb{Z}$ such that the integral converges.

A recipe: periods of moduli spaces $\mathcal{M}_{0, N}$

Examples of period integrals on $\mathcal{M}_{0, N}$:

$$
\int_{\delta_{n}} \prod_{i} t_{i}^{a_{i}} \prod_{j}\left(1-t_{j}\right)^{b_{j}} \prod_{i<j}\left(t_{i}-t_{j}\right)^{c_{i, j}} \mathrm{~d} t_{1} \ldots \mathrm{~d} t_{n}
$$

for some $a_{i}, b_{j}, c_{i, j} \in \mathbb{Z}$ such that the integral converges.

Theorem (Brown)

The periods of moduli spaces $\mathcal{M}_{0, N}$ are $\mathbb{Q}[2 \pi i]$-linear combinations of multiple zeta values of total weight $\leq n=N-3$.

A recipe: periods of moduli spaces $\mathcal{M}_{0, N}$

Examples of period integrals on $\mathcal{M}_{0, N}$:

$$
\int_{\delta_{n}} \prod_{i} t_{i}^{a_{i}} \prod_{j}\left(1-t_{j}\right)^{b_{j}} \prod_{i<j}\left(t_{i}-t_{j}\right)^{c_{i, j}} \mathrm{~d} t_{1} \ldots \mathrm{~d} t_{n}
$$

for some $a_{i}, b_{j}, c_{i, j} \in \mathbb{Z}$ such that the integral converges.

Theorem (Brown)

The periods of moduli spaces $\mathcal{M}_{0, N}$ are $\mathbb{Q}[2 \pi i]$-linear combinations of multiple zeta values of total weight $\leq n=N-3$.

General recipe for linear forms in MZV's
Consider family of convergent integrals

$$
I_{f, \omega}(k)=\int_{\delta_{n}} f^{k} \omega
$$

where $\omega \in \Omega^{n}\left(\mathcal{M}_{0, N}, \mathbb{Q}\right)$ is a regular n-form and $f \in \Omega^{0}\left(\mathcal{M}_{0, N}, \mathbb{Q}\right)$.

Vanishing of coefficients

In view of irrationality proofs, we want the additional requirement:
(9) Vanishing theorems for some of the coefficients $a_{j}^{(i)}$.

Vanishing of coefficients

In view of irrationality proofs, we want the additional requirement:
(- Vanishing theorems for some of the coefficients $a_{j}^{(i)}$.

- Generic period integral on $\mathcal{M}_{0,6}$ gives $1, \zeta(2)$ and $\zeta(3) \ldots$ Get rid of $\zeta(2)$! Then we obtain exactly the Apéry sequence.

Vanishing of coefficients

In view of irrationality proofs, we want the additional requirement:
(9) Vanishing theorems for some of the coefficients $a_{j}^{(i)}$.

- Generic period integral on $\mathcal{M}_{0,6}$ gives $1, \zeta(2)$ and $\zeta(3) \ldots$ Get rid of $\zeta(2)$! Then we obtain exactly the Apéry sequence.
- Ball-Rivoal: "very well-poised hypergeometric series"
\Longrightarrow odd zeta values only.

Vanishing of coefficients

In view of irrationality proofs, we want the additional requirement:
(4) Vanishing theorems for some of the coefficients $a_{j}^{(i)}$.

- Generic period integral on $\mathcal{M}_{0,6}$ gives $1, \zeta(2)$ and $\zeta(3) \ldots$ Get rid of $\zeta(2)$! Then we obtain exactly the Apéry sequence.
- Ball-Rivoal: "very well-poised hypergeometric series"
\Longrightarrow odd zeta values only.

In terms of algebraic geometry: consider the (mixed Tate) motive

$$
\mathrm{H}_{A, B}:=\mathrm{H}^{n}\left(\overline{\mathcal{M}}_{0, N} \backslash A, B \backslash A\right), \text { where }
$$

- $\overline{\mathcal{M}}_{0, N}$ is the Deligne-Mumford compactification;
- A is a divisor where differential forms are allowed to have poles;
- B is a divisor containing the boundary of the domain of integration.

Vanishing of coefficients

In view of irrationality proofs, we want the additional requirement:
(4) Vanishing theorems for some of the coefficients $a_{j}^{(i)}$.

- Generic period integral on $\mathcal{M}_{0,6}$ gives $1, \zeta(2)$ and $\zeta(3) \ldots$ Get rid of $\zeta(2)$! Then we obtain exactly the Apéry sequence.
- Ball-Rivoal: "very well-poised hypergeometric series"
\Longrightarrow odd zeta values only.

In terms of algebraic geometry: consider the (mixed Tate) motive

$$
\mathrm{H}_{A, B}:=\mathrm{H}^{n}\left(\overline{\mathcal{M}}_{0, N} \backslash A, B \backslash A\right) \text {, where }
$$

- $\overline{\mathcal{M}}_{0, N}$ is the Deligne-Mumford compactification;
- A is a divisor where differential forms are allowed to have poles;
- B is a divisor containing the boundary of the domain of integration.

Then $\operatorname{gr}_{2 k}^{W} \mathrm{H}_{A, B}=0 \Longrightarrow$ vanishing of coefficients $a_{j}^{(i)}$ in weight k.

Periods and cohomology

For a smooth algebraic variety defined over \mathbb{Q}, we have:

- the Betti cohomology groups (singular cohomology) $\mathrm{H}_{\mathrm{B}}^{k}(X)$;
- the algebraic de Rham cohomology groups $\mathrm{H}_{\mathrm{dR}}^{k}(X)$;
- the comparison isomorphism $H_{B}^{k}(X) \otimes_{\mathbb{Q}} \mathbb{C} \xrightarrow{\sim} H_{d R}^{k}(X) \otimes_{\mathbb{Q}} \mathbb{C}$, whose coefficients are periods. Equivalently: Betti / de Rham pairing.

Periods and cohomology

For a smooth algebraic variety defined over \mathbb{Q}, we have:

- the Betti cohomology groups (singular cohomology) $\mathrm{H}_{\mathrm{B}}^{k}(X)$;
- the algebraic de Rham cohomology groups $\mathrm{H}_{\mathrm{dR}}^{k}(X)$;
- the comparison isomorphism $H_{B}^{k}(X) \otimes_{\mathbb{Q}} \mathbb{C} \xrightarrow{\sim} H_{d R}^{k}(X) \otimes_{\mathbb{Q}} \mathbb{C}$, whose coefficients are periods. Equivalently: Betti / de Rham pairing.

$$
\mathbb{Q}(-1)=\mathrm{H}^{1}\left(\mathbb{C}^{*}\right) \quad \begin{array}{r}
\mathrm{d} z / \mathrm{z} \\
(2 \pi i)
\end{array}
$$

Periods and cohomology

For a smooth algebraic variety defined over \mathbb{Q}, we have:

- the Betti cohomology groups (singular cohomology) $\mathrm{H}_{\mathrm{B}}^{k}(X)$;
- the algebraic de Rham cohomology groups $\mathrm{H}_{\mathrm{dR}}^{k}(X)$;
- the comparison isomorphism $H_{\mathrm{B}}^{k}(X) \otimes_{\mathbb{Q}} \mathbb{C} \xrightarrow{\sim} \mathrm{H}_{\mathrm{dR}}^{k}(X) \otimes_{\mathbb{Q}} \mathbb{C}$, whose coefficients are periods. Equivalently: Betti / de Rham pairing.

$$
\begin{aligned}
& \mathbb{Q}(-1)=\mathrm{H}^{1}\left(\mathbb{C}^{*}\right) \\
& \mathrm{d} z \mathrm{~d} z / z \\
& { }_{\gamma}^{\sigma}\left(\begin{array}{cc}
1 & \log 2 \\
0 & 2 \pi i
\end{array}\right) \\
& 0 \rightarrow \mathbb{Q}(0) \rightarrow K_{2} \rightarrow \mathbb{Q}(-1) \rightarrow 0, \quad \text { "ramified at 2" }
\end{aligned}
$$

Mixed Tate motives over \mathbb{Q}, over \mathbb{Z} ("non-ramified")

Category $\operatorname{MTM}(\mathbb{Q})$: abelian, rigid tensor category (symmetric, duals), exact faithful tensor functors $\omega_{\mathrm{dR}}, \omega_{\mathrm{B}}: M T M(\mathbb{Q}) \rightarrow$ Vect (Tannakian)

Mixed Tate motives over \mathbb{Q}, over \mathbb{Z} ("non-ramified")

Category $\operatorname{MTM}(\mathbb{Q})$: abelian, rigid tensor category (symmetric, duals), exact faithful tensor functors $\omega_{\mathrm{dR}}, \omega_{\mathrm{B}}: M T M(\mathbb{Q}) \rightarrow$ Vect (Tannakian)

- For each $n \in \mathbb{Z}$, simple object $\mathbb{Q}(-n)=\mathbb{Q}(-1)^{\otimes n}$.

Mixed Tate motives over \mathbb{Q}, over \mathbb{Z} ("non-ramified")

Category $\operatorname{MTM}(\mathbb{Q})$: abelian, rigid tensor category (symmetric, duals), exact faithful tensor functors $\omega_{\mathrm{dR}}, \omega_{\mathrm{B}}: M T M(\mathbb{Q}) \rightarrow$ Vect (Tannakian)

- For each $n \in \mathbb{Z}$, simple object $\mathbb{Q}(-n)=\mathbb{Q}(-1)^{\otimes n}$. Period matrix: $\left((2 \pi i)^{n}\right)$.

Mixed Tate motives over \mathbb{Q}, over \mathbb{Z} ("non-ramified")

Category $\operatorname{MTM}(\mathbb{Q})$: abelian, rigid tensor category (symmetric, duals), exact faithful tensor functors $\omega_{\mathrm{dR}}, \omega_{\mathrm{B}}: M T M(\mathbb{Q}) \rightarrow$ Vect (Tannakian)

- For each $n \in \mathbb{Z}$, simple object $\mathbb{Q}(-n)=\mathbb{Q}(-1)^{\otimes n}$. Period matrix: $\left((2 \pi i)^{n}\right)$. Effective if $n \geq 0: \mathbb{Q}(-n)=\mathrm{H}^{n}\left(\left(\mathbb{C}^{*}\right)^{n}\right)$.

Mixed Tate motives over \mathbb{Q}, over \mathbb{Z} ("non-ramified")

Category $\operatorname{MTM}(\mathbb{Q})$: abelian, rigid tensor category (symmetric, duals), exact faithful tensor functors $\omega_{\mathrm{dR}}, \omega_{\mathrm{B}}: M T M(\mathbb{Q}) \rightarrow$ Vect (Tannakian)

- For each $n \in \mathbb{Z}$, simple object $\mathbb{Q}(-n)=\mathbb{Q}(-1)^{\otimes n}$.

Period matrix: $\left((2 \pi i)^{n}\right)$. Effective if $n \geq 0: \mathbb{Q}(-n)=\mathrm{H}^{n}\left(\left(\mathbb{C}^{*}\right)^{n}\right)$.

- for each $a \in \mathbb{Q}_{>0}$, we have an extension in $\operatorname{MTM}(\mathbb{Q})$

$$
0 \rightarrow \mathbb{Q}(0) \rightarrow K_{a} \rightarrow \mathbb{Q}(-1) \rightarrow 0
$$

$$
\text { Period matrix: }\left(\begin{array}{cc}
1 & \log a \\
0 & 2 \pi i
\end{array}\right)
$$

(Kummer motive, trivial extension iff $a=1$)

Mixed Tate motives over \mathbb{Q}, over \mathbb{Z} ("non-ramified")

Category $\operatorname{MTM}(\mathbb{Q})$: abelian, rigid tensor category (symmetric, duals), exact faithful tensor functors $\omega_{\mathrm{dR}}, \omega_{\mathrm{B}}: M T M(\mathbb{Q}) \rightarrow$ Vect (Tannakian)

- For each $n \in \mathbb{Z}$, simple object $\mathbb{Q}(-n)=\mathbb{Q}(-1)^{\otimes n}$.

Period matrix: $\left((2 \pi i)^{n}\right)$. Effective if $n \geq 0: \mathbb{Q}(-n)=\mathrm{H}^{n}\left(\left(\mathbb{C}^{*}\right)^{n}\right)$.

- for each $a \in \mathbb{Q}_{>0}$, we have an extension in $\operatorname{MTM}(\mathbb{Q})$

$$
0 \rightarrow \mathbb{Q}(0) \rightarrow K_{a} \rightarrow \mathbb{Q}(-1) \rightarrow 0
$$

$$
\text { Period matrix: }\left(\begin{array}{cc}
1 & \log a \\
0 & 2 \pi i
\end{array}\right)
$$

(Kummer motive, trivial extension iff $a=1$)

- For $n=3,5,7, \ldots$, we have a non-trivial extension

$$
0 \rightarrow \mathbb{Q}(0) \rightarrow Z_{n} \rightarrow \mathbb{Q}(-n) \rightarrow 0
$$

Period matrix: $\left(\begin{array}{cc}1 & \zeta(n) \\ 0 & (2 \pi i)^{n}\end{array}\right)$

Mixed Tate motives over \mathbb{Q}, over \mathbb{Z} ("non-ramified")

Category $\operatorname{MTM}(\mathbb{Q})$: abelian, rigid tensor category (symmetric, duals), exact faithful tensor functors $\omega_{\mathrm{dR}}, \omega_{\mathrm{B}}: M T M(\mathbb{Q}) \rightarrow$ Vect (Tannakian)

- For each $n \in \mathbb{Z}$, simple object $\mathbb{Q}(-n)=\mathbb{Q}(-1)^{\otimes n}$.

Period matrix: $\left((2 \pi i)^{n}\right)$. Effective if $n \geq 0: \mathbb{Q}(-n)=\mathrm{H}^{n}\left(\left(\mathbb{C}^{*}\right)^{n}\right)$.

- for each $a \in \mathbb{Q}_{>0}$, we have an extension in $\operatorname{MTM}(\mathbb{Q})$

$$
0 \rightarrow \mathbb{Q}(0) \rightarrow K_{a} \rightarrow \mathbb{Q}(-1) \rightarrow 0
$$

$$
\text { Period matrix: }\left(\begin{array}{cc}
1 & \log a \\
0 & 2 \pi i
\end{array}\right)
$$

(Kummer motive, trivial extension iff $a=1$)

- For $n=3,5,7, \ldots$, we have a non-trivial extension

$$
\begin{gathered}
0 \rightarrow \mathbb{Q}(0) \rightarrow Z_{n} \rightarrow \mathbb{Q}(-n) \rightarrow 0 \\
\text { Period matrix: } \quad\left(\begin{array}{cc}
1 & \zeta(n) \\
0 & (2 \pi i)^{n}
\end{array}\right)
\end{gathered}
$$

- All higher Ext vanish.

Mixed Tate motives over \mathbb{Q}, over \mathbb{Z} ("non-ramified")

Category $\operatorname{MTM}(\mathbb{Q})$: abelian, rigid tensor category (symmetric, duals), exact faithful tensor functors $\omega_{\mathrm{dR}}, \omega_{\mathrm{B}}: M T M(\mathbb{Q}) \rightarrow$ Vect (Tannakian)

- For each $n \in \mathbb{Z}$, simple object $\mathbb{Q}(-n)=\mathbb{Q}(-1)^{\otimes n}$.

Period matrix: $\left((2 \pi i)^{n}\right)$. Effective if $n \geq 0: \mathbb{Q}(-n)=\mathrm{H}^{n}\left(\left(\mathbb{C}^{*}\right)^{n}\right)$.

- for each $a \in \mathbb{Q}_{>0}$, we have an extension in $\operatorname{MTM}(\mathbb{Q})$

$$
0 \rightarrow \mathbb{Q}(0) \rightarrow K_{a} \rightarrow \mathbb{Q}(-1) \rightarrow 0
$$

$$
\text { Period matrix: }\left(\begin{array}{cc}
1 & \log a \\
0 & 2 \pi i
\end{array}\right)
$$

(Kummer motive, trivial extension iff $a=1$)

- For $n=3,5,7, \ldots$, we have a non-trivial extension

$$
\begin{gathered}
0 \rightarrow \mathbb{Q}(0) \rightarrow Z_{n} \rightarrow \mathbb{Q}(-n) \rightarrow 0 \\
\text { Period matrix: } \quad\left(\begin{array}{cc}
1 & \zeta(n) \\
0 & (2 \pi i)^{n}
\end{array}\right)
\end{gathered}
$$

- All higher Ext vanish.
- In $\operatorname{MTM}(\mathbb{Z})$, the extensions K_{a} are not allowed.

Mixed Tate motives over \mathbb{Q}, over \mathbb{Z} ("non-ramified")

Category $\operatorname{MTM}(\mathbb{Q})$: abelian, rigid tensor category (symmetric, duals), exact faithful tensor functors $\omega_{\mathrm{dR}}, \omega_{\mathrm{B}}: \operatorname{MTM}(\mathbb{Q}) \rightarrow$ Vect (Tannakian)

- For each $n \in \mathbb{Z}$, simple object $\mathbb{Q}(-n)=\mathbb{Q}(-1)^{\otimes n}$.

Period matrix: $\left((2 \pi i)^{n}\right)$. Effective if $n \geq 0: \mathbb{Q}(-n)=\mathrm{H}^{n}\left(\left(\mathbb{C}^{*}\right)^{n}\right)$.

- for each $a \in \mathbb{Q}_{>0}$, we have an extension in $\operatorname{MTM}(\mathbb{Q})$

$$
0 \rightarrow \mathbb{Q}(0) \rightarrow K_{a} \rightarrow \mathbb{Q}(-1) \rightarrow 0
$$

$$
\text { Period matrix: }\left(\begin{array}{cc}
1 & \log a \\
0 & 2 \pi i
\end{array}\right)
$$

(Kummer motive, trivial extension iff $a=1$)

- For $n=3,5,7, \ldots$, we have a non-trivial extension

$$
\begin{gathered}
0 \rightarrow \mathbb{Q}(0) \rightarrow Z_{n} \rightarrow \mathbb{Q}(-n) \rightarrow 0 \\
\text { Period matrix: }\left(\begin{array}{cc}
1 & \zeta(n) \\
0 & (2 \pi i)^{n}
\end{array}\right)
\end{gathered}
$$

- All higher Ext vanish.
- In $M T M(\mathbb{Z})$, the extensions K_{a} are not allowed.
- $\operatorname{Per}(M T M(\mathbb{Z}))=\bigcup_{N} \operatorname{Per}\left(\mathcal{M}_{0, N}\right)=\mathbb{Q}[2 \pi i][\mathrm{MZV}]=\mathbb{Q}[2 \pi i]\left[\mathrm{MZV}_{2,3}\right]$

$$
\zeta(2)=\sum_{k \geq 1} \frac{1}{k^{2}}=\iint_{0<x<y<1} \frac{d x d y}{(1-x) y} .
$$

Example: $\zeta(2)$

$$
\zeta(2)=\sum_{k \geq 1} \frac{1}{k^{2}}=\iint_{0<x<y<1} \frac{d x d y}{(1-x) y} .
$$

\mathbb{P}^{2}
6 lines, 7 points

Example: $\zeta(2)$

$$
\zeta(2)=\sum_{k \geq 1} \frac{1}{k^{2}}=\iint_{0<x<y<1} \frac{d x d y}{(1-x) y}
$$

6 lines, 7 points

$$
\widetilde{\mathbb{P}^{2}}=\overline{\mathcal{M}}_{0,5}
$$

10 lines, 15 points

Example: $\zeta(2)$

$$
\zeta(2)=\sum_{k \geq 1} \frac{1}{k^{2}}=\iint_{0<x<y<1} \frac{d x d y}{(1-x) y} .
$$

\mathbb{P}^{2}
6 lines, 7 points

$$
\widetilde{\mathbb{P}^{2}}=\overline{\mathcal{M}}_{0,5}
$$

10 lines, 15 points
$\mathrm{H}:=\mathrm{H}^{2}\left(\widetilde{\mathbb{P}^{2}} \backslash \widetilde{A}, \widetilde{B} \backslash \widetilde{A}\right)$. Period matrix: $\left(\begin{array}{cc}1 & \zeta(2) \\ 0 & (2 \pi i)^{2}\end{array}\right) \sim\left(\begin{array}{cc}1 & 0 \\ 0 & (2 \pi i)^{2}\end{array}\right)$.

Bi-arrangements of hyperplanes

Definition (Dupont 2014)

A bi-arrangement of hyperplanes is a triple $(\mathcal{L}, \mathcal{M}, \chi)$ where

- $\mathcal{L}=\left\{L_{1}, \ldots, L_{l}\right\}$ is a set of hyperplanes in \mathbb{P}^{n};
- $\mathcal{M}=\left\{M_{1}, \ldots, M_{m}\right\}$ is a set of hyperplanes in \mathbb{P}^{n};
- $\chi: \mathcal{S}=\operatorname{Flats}(A \cup B) \rightarrow\{\lambda, \mu\}$ is a coloring function, satisfying

$$
\chi\left(L_{i}\right)=\lambda \text { and } \chi\left(M_{j}\right)=\mu \text { for all } i, j
$$

Bi-arrangements of hyperplanes

Definition (Dupont 2014)

A bi-arrangement of hyperplanes is a triple $(\mathcal{L}, \mathcal{M}, \chi)$ where

- $\mathcal{L}=\left\{L_{1}, \ldots, L_{l}\right\}$ is a set of hyperplanes in \mathbb{P}^{n};
- $\mathcal{M}=\left\{M_{1}, \ldots, M_{m}\right\}$ is a set of hyperplanes in \mathbb{P}^{n};
- $\chi: \mathcal{S}=\operatorname{Flats}(A \cup B) \rightarrow\{\lambda, \mu\}$ is a coloring function, satisfying

$$
\chi\left(L_{i}\right)=\lambda \text { and } \chi\left(M_{j}\right)=\mu \text { for all } i, j
$$

Definition (Dupont 2014)

The motive of the bi-arrangement of hyperplanes $(\mathcal{L}, \mathcal{M}, \chi)$ is the collection of relative cohomology groups (mixed Hodge structures)

$$
H^{\bullet}\left(\widetilde{\mathbb{P}^{n}} \backslash \tilde{\mathcal{L}}, \widetilde{\mathcal{M}} \backslash \widetilde{\mathfrak{L}}\right) .
$$

Bi -arrangements of hyperplanes

Definition (Dupont 2014)

A bi-arrangement of hyperplanes is a triple $(\mathcal{L}, \mathcal{M}, \chi)$ where

- $\mathcal{L}=\left\{L_{1}, \ldots, L_{l}\right\}$ is a set of hyperplanes in \mathbb{P}^{n};
- $\mathcal{M}=\left\{M_{1}, \ldots, M_{m}\right\}$ is a set of hyperplanes in \mathbb{P}^{n};
- $\chi: \mathcal{S}=\operatorname{Flats}(A \cup B) \rightarrow\{\lambda, \mu\}$ is a coloring function, satisfying

$$
\chi\left(L_{i}\right)=\lambda \text { and } \chi\left(M_{j}\right)=\mu \text { for all } i, j
$$

Definition (Dupont 2014)

The motive of the bi-arrangement of hyperplanes $(\mathcal{L}, \mathcal{M}, \chi)$ is the collection of relative cohomology groups (mixed Hodge structures)

$$
H^{\bullet}\left(\widetilde{\mathbb{P}^{n}} \backslash \tilde{\mathcal{L}}, \widetilde{\mathcal{M}} \backslash \widetilde{\mathfrak{L}}\right) .
$$

Inspired by (Aomoto 1977, 1982) and (Beilinson-Goncharov-Schechtman-Varchenko, 1989).

The Orlik-Solomon bicomplex

Definition
We define the Orlik-Solomon bicomplex $A_{\bullet, \bullet}=A_{\bullet, \bullet}(\mathcal{L}, \mathcal{M}, \chi)$:
$>A_{2,0} \longrightarrow A_{1,0} \xrightarrow{d^{\prime}} A_{0,0}$

The Orlik-Solomon bicomplex

Definition

We define the Orlik-Solomon bicomplex $A_{\bullet, \bullet}=A_{\bullet, \bullet}(\mathcal{L}, \mathcal{M}, \chi)$:

$$
>A_{2,0} \longrightarrow A_{1,0} \xrightarrow{d^{\prime}} A_{0,0}
$$

We define $A_{i, j}=\bigoplus_{S \in s_{i+j}} A_{i, j}^{S}$ and the differentials d^{\prime} and $d^{\prime \prime}$ by induction on the codimension $i+j$. Here $S_{k}=$ flats of codimension k.

The Orlik-Solomon bicomplex

Base step of the induction: $A_{0,0}=\mathbb{Q}$.

The Orlik-Solomon bicomplex

Base step of the induction: $A_{0,0}=\mathbb{Q}$.
Inductive step:

- For a flat Σ such that $\chi(\Sigma)=\lambda$, we define $A_{i, j}^{\sum}$ as a kernel:

$$
0 \rightarrow A_{i, j}^{\Sigma} \xrightarrow{d^{\prime}} \bigoplus_{S \supset \Sigma} A_{i-1, j}^{S} \stackrel{d^{\prime}}{\rightarrow} \bigoplus_{T \supset \Sigma} A_{i-2, j}^{T} .
$$

The Orlik-Solomon bicomplex

Base step of the induction: $A_{0,0}=\mathbb{Q}$.

Inductive step :

- For a flat Σ such that $\chi(\Sigma)=\lambda$, we define $A_{i, j}^{\Sigma}$ as a kernel:

$$
0 \rightarrow A_{i, j}^{\Sigma} \xrightarrow{d^{\prime}} \bigoplus_{S \supset \Sigma} A_{i-1, j}^{S} \xrightarrow{d^{\prime}} \bigoplus_{T \supset \Sigma} A_{i-2, j}^{T} .
$$

- For a flat Σ such that $\chi(\Sigma)=\mu$, we define $A_{i, j}^{\Sigma}$ as a cokernel:

$$
0 \leftarrow A_{i, j}^{\Sigma} \stackrel{d^{\prime \prime}}{\leftarrow} \bigoplus_{S \supset \Sigma} A_{i, j-1}^{S} \stackrel{d^{\prime \prime}}{\leftarrow} \bigoplus_{T \supset \Sigma} A_{i, j-2}^{T} .
$$

The Orlik-Solomon bicomplex

Base step of the induction: $A_{0,0}=\mathbb{Q}$.
Inductive step :

- For a flat Σ such that $\chi(\Sigma)=\lambda$, we define $A_{i, j}^{\Sigma}$ as a kernel:

$$
0 \rightarrow A_{i, j}^{\Sigma} \xrightarrow{d^{\prime}} \bigoplus_{S \supset \Sigma} A_{i-1, j}^{S} \xrightarrow{d^{\prime}} \bigoplus_{T \supset \Sigma} A_{i-2, j}^{T} .
$$

- For a flat Σ such that $\chi(\Sigma)=\mu$, we define $A_{i, j}^{\Gamma}$ as a cokernel:

$$
0 \leftarrow A_{i, j}^{\Sigma} \stackrel{d^{\prime \prime}}{\leftarrow} \bigoplus_{S \supset \Sigma} A_{i, j-1}^{S} \stackrel{d^{\prime \prime}}{\leftarrow} \bigoplus_{T \supset \Sigma} A_{i, j-2}^{T} .
$$

- In any case, we complete the squares by the universal property.

The Orlik-Solomon bicomplex

Base step of the induction: $A_{0,0}=\mathbb{Q}$.

Inductive step:

- For a flat Σ such that $\chi(\Sigma)=\lambda$, we define $A_{i, j}^{\Sigma}$ as a kernel:

$$
0 \rightarrow A_{i, j}^{\Sigma} \xrightarrow{d^{\prime}} \bigoplus_{S \supset \Sigma} A_{i-1, j}^{S} \stackrel{d^{\prime}}{\rightarrow} \bigoplus_{T \supset \Sigma} A_{i-2, j}^{T} .
$$

- For a flat Σ such that $\chi(\Sigma)=\mu$, we define $A_{i, j}^{\Gamma}$ as a cokernel:

$$
0 \leftarrow A_{i, j}^{\Sigma} \stackrel{d^{\prime \prime}}{\leftarrow} \bigoplus_{S \supset \Sigma} A_{i, j-1}^{S} \stackrel{d^{\prime \prime}}{\leftarrow} \bigoplus_{T \supset \Sigma} A_{i, j-2}^{T} .
$$

- In any case, we complete the squares by the universal property.

Hence we use:

- KernelObject, KernelMorphism, KernelLift and dual versions,

The Orlik-Solomon bicomplex

Base step of the induction: $A_{0,0}=\mathbb{Q}$.

Inductive step:

- For a flat Σ such that $\chi(\Sigma)=\lambda$, we define $A_{i, j}^{\Sigma}$ as a kernel:

$$
0 \rightarrow A_{i, j}^{\Sigma} \xrightarrow{d^{\prime}} \bigoplus_{S \supset \Sigma} A_{i-1, j}^{S} \stackrel{d^{\prime}}{\rightarrow} \bigoplus_{T \supset \Sigma} A_{i-2, j}^{T} .
$$

- For a flat Σ such that $\chi(\Sigma)=\mu$, we define $A_{i, j}^{\Gamma}$ as a cokernel:

$$
0 \leftarrow A_{i, j}^{\Sigma} \stackrel{d^{\prime \prime}}{\leftarrow} \bigoplus_{S \supset \Sigma} A_{i, j-1}^{S} \stackrel{d^{\prime \prime}}{\leftarrow} \bigoplus_{T \supset \Sigma} A_{i, j-2}^{T} .
$$

- In any case, we complete the squares by the universal property.

Hence we use:

- KernelObject, KernelMorphism, KernelLift and dual versions,
- MorphismBetweenDirectSums, ComponentOfMorphismIntoDirectSum, ComponentOfMorphismFromDirectSum. . .

Example

codim 2

codim 1
codim 0

Example

$A_{6}^{\leq},{ }_{\bullet}$

codim 2
codim 1
codim 0

$$
A_{0,0}^{X}=\mathbb{Q}
$$

Example

$A_{\bullet, \bullet}^{<L_{i}}$

codim 2
codim 1
codim 0

$$
A_{0,0}^{X}=\mathbb{Q}
$$

Example

$A_{\bullet} \leq L_{i}$
$\mathbb{Q} \xrightarrow{(1)} \mathbb{Q}$

codim 2

codim 1
codim 0

$$
\begin{aligned}
& A_{0,0}^{X}=\mathbb{Q} \\
& A_{1,0}^{L_{i}}=\mathbb{Q} \quad d_{1,0}^{\prime X, L_{i}}=(1)
\end{aligned}
$$

Example

codim 2
codim 1
codim 0

$$
\begin{aligned}
& A_{0,0}^{X}=\mathbb{Q} \\
& A_{1,0}^{L_{i}}=\mathbb{Q} \quad d_{1,0}^{\prime X, L_{i}}=(1)
\end{aligned}
$$

Example

codim 2
codim 1
codim 0

$$
\begin{array}{ll}
A_{0,0}^{X}=\mathbb{Q} \\
A_{1,0}^{L_{i}}=\mathbb{Q} & d_{1,0}^{\prime X, L_{i}}=(1) \\
A_{1,0}^{M}=\mathbb{Q} & d_{1,0}^{\prime \prime M, X}=(1)
\end{array}
$$

Example

$A_{\bullet}<\boldsymbol{P}$
$\mathbb{Q}^{2} \xrightarrow{(11)} \mathbb{Q}$

$$
\begin{array}{ll}
A_{0,0}^{X}=\mathbb{Q} \\
A_{1,0}^{L_{i}}=\mathbb{Q} & d_{1,0}^{\prime X, L_{i}}=(1) \\
A_{1,0}^{M}=\mathbb{Q} & d_{1,0}^{\prime \prime M, X}=(1)
\end{array}
$$

Example

codim 2
codim 1
codim 0

$$
\begin{array}{ll}
A_{0,0}^{X}=\mathbb{Q} \\
A_{1,0}^{L_{i}}=\mathbb{Q} & d_{1,0}^{\prime X, L_{i}}=(1) \\
A_{1,0}^{M}=\mathbb{Q} & d_{1,0}^{\prime \prime M, X}=(1) \\
A_{2,0}^{P}=\mathbb{Q}^{2} & d_{2,0}^{\prime L_{1}, P}=(1) \quad d_{2,0}^{\prime L_{2}, P}=(-1) \\
A_{1,1}^{P}=\mathbb{Q} & d_{1,1}^{\prime M, P}=(1)
\end{array}
$$

Example

codim 2
codim 1
codim 0

$$
\begin{array}{ll}
A_{0,0}^{X}=\mathbb{Q} \\
A_{1,0}^{L_{i}}=\mathbb{Q} & d_{1,0}^{\prime X, L_{i}}=(1) \\
A_{1,0}^{M}=\mathbb{Q} & d_{1,0}^{\prime \prime M, X}=(1) \\
A_{2,0}^{P}=\mathbb{Q}^{2} & d_{2,0}^{\prime L_{1}, P}=(1) \quad d_{2,0}^{\prime L_{2}, P}=(-1) \\
A_{1,1}^{P}=\mathbb{Q} & d_{1,1}^{\prime M, P}=(1) \\
& d_{1,0}^{\prime \prime P, L_{1}}=(1) \quad d_{1,0}^{\prime \prime P, L_{2}}=(1)
\end{array}
$$

Exactness

Definition

A bi-arrangement of hyperplanes ($\mathcal{L}, \mathcal{M}, \chi$) is exact if the above exact sequences can be continued to long exact sequences

$$
0 \rightarrow A_{i, j}^{\Sigma} \xrightarrow{d^{\prime}} \bigoplus_{S \supset \Sigma} A_{i-1, j}^{S} \xrightarrow{d^{\prime}} \bigoplus_{T \supset \Sigma} A_{i-2, j}^{T} \xrightarrow{d^{\prime}} \cdots
$$

or

$$
0 \leftarrow A_{i, j}^{\Sigma} \stackrel{d^{\prime \prime}}{\leftarrow} \bigoplus_{S \supset \Sigma} A_{i, j-1}^{S} \stackrel{d^{\prime \prime}}{\leftarrow} \bigoplus_{T \supset \Sigma} A_{i, j-2}^{T} \stackrel{d^{\prime \prime}}{\leftarrow} \cdots
$$

Exactness

Definition

A bi-arrangement of hyperplanes ($\mathcal{L}, \mathcal{M}, \chi$) is exact if the above exact sequences can be continued to long exact sequences

$$
0 \rightarrow A_{i, j}^{\Sigma} \xrightarrow{d^{\prime}} \bigoplus_{S \supset \Sigma} A_{i-1, j}^{S} \xrightarrow{d^{\prime}} \bigoplus_{T \supset \Sigma} A_{i-2, j}^{T} \xrightarrow{d^{\prime}} \cdots
$$

or

Remark

- All arrangements of hyperplanes $(\mathcal{A}, \varnothing, \lambda)$ are exact, $A_{\bullet, 0}(\mathcal{A}, \varnothing, \lambda)=A_{\bullet}(\mathcal{A})$.

Exactness

Definition

A bi-arrangement of hyperplanes ($\mathcal{L}, \mathcal{M}, \chi$) is exact if the above exact sequences can be continued to long exact sequences

$$
0 \rightarrow A_{i, j}^{\Sigma} \xrightarrow{d^{\prime}} \bigoplus_{S \supset \Sigma} A_{i-1, j}^{S} \xrightarrow{d^{\prime}} \bigoplus_{T \supset \Sigma} A_{i-2, j}^{T} \xrightarrow{d^{\prime}} \cdots
$$

or

$$
0 \leftarrow A_{i, j}^{\Sigma} \stackrel{d^{\prime \prime}}{\leftarrow} \bigoplus_{S \supset \Sigma} A_{i, j-1}^{S} \stackrel{d^{\prime \prime}}{\leftarrow} \bigoplus_{T \supset \Sigma} A_{i, j-2}^{T} \stackrel{d^{\prime \prime}}{\leftarrow} \cdots
$$

Remark

- All arrangements of hyperplanes $(\mathcal{A}, \varnothing, \lambda)$ are exact, $A_{\bullet, 0}(\mathcal{A}, \varnothing, \lambda)=A_{\bullet}(\mathcal{A})$.
- Deletion and restriction formalism for exact bi-arrangements of hyperplanes.

Theorem (Dupont 2014)

For an exact bi-arrangement of hyperplanes $(\mathcal{L}, \mathcal{M}, \chi)$ in \mathbb{P}^{n}, "the Orlik-Solomon bicomplex $A_{\bullet, \bullet}(\mathcal{L}, \mathcal{M}, \chi)$ computes the motive $H^{\bullet}(\mathcal{L}, \mathcal{M}, \chi)^{\prime \prime}$.

Theorem (Dupont 2014)

For an exact bi-arrangement of hyperplanes $(\mathcal{L}, \mathcal{M}, \chi)$ in \mathbb{P}^{n}, "the Orlik-Solomon bicomplex $A_{\bullet, \bullet}(\mathcal{L}, \mathcal{M}, \chi)$ computes the motive $H^{\bullet}(\mathcal{L}, \mathcal{M}, \chi){ }^{\prime \prime}$. More precisely, for each $k=0, \ldots, n$:

- we consider the double complex $A_{0 \leq \bullet \leq k, 0 \leq \bullet \leq n-k}$;
- we let ${ }^{(k)} A_{0}$ be its total complex ;
- then $\operatorname{gr}_{2 k}^{W} H^{r}(\mathcal{L}, \mathcal{M}, \chi) \cong H_{2 k-r}\left({ }^{(k)} A_{\bullet}\right)$
($W=$ the weight filtration coming from mixed Hodge theory).

The main theorem

Theorem (Dupont 2014)

For an exact bi-arrangement of hyperplanes $(\mathcal{L}, \mathcal{M}, \chi)$ in \mathbb{P}^{n}, "the Orlik-Solomon bicomplex $A_{\bullet, \bullet}(\mathcal{L}, \mathcal{M}, \chi)$ computes the motive $H^{\bullet}(\mathcal{L}, \mathcal{M}, \chi)$ ". More precisely, for each $k=0, \ldots, n$:

- we consider the double complex $A_{0 \leq \bullet \leq k, 0 \leq \bullet \leq n-k}$;
- we let ${ }^{(k)} A_{\bullet}$ be its total complex ;
- then $\operatorname{gr}_{2 k}^{W} H^{r}(\mathcal{L}, \mathcal{M}, \chi) \cong H_{2 k-r}\left({ }^{(k)} A_{\bullet}\right)$
($W=$ the weight filtration coming from mixed Hodge theory).

Remark

- For arrangements of hyperplanes, we recover the (projective) Brieskorn-Orlik-Solomon theorem, with only weight $\mathrm{gr}_{2 k} \mathrm{H}^{k}$.

The main theorem

Theorem (Dupont 2014)

For an exact bi-arrangement of hyperplanes $(\mathcal{L}, \mathcal{M}, \chi)$ in \mathbb{P}^{n}, "the Orlik-Solomon bicomplex $A_{\bullet, \bullet}(\mathcal{L}, \mathcal{M}, \chi)$ computes the motive $H^{\bullet}(\mathcal{L}, \mathcal{M}, \chi) "$. More precisely, for each $k=0, \ldots, n$:

- we consider the double complex $A_{0 \leq \bullet \leq k, 0 \leq \bullet \leq n-k}$;
- we let ${ }^{(k)} A_{\bullet}$ be its total complex ;
- then $\operatorname{gr}_{2 k}^{W} H^{r}(\mathcal{L}, \mathcal{M}, \chi) \cong H_{2 k-r}\left({ }^{\left({ }^{(k)}\right.} A_{\bullet}\right)$
($W=$ the weight filtration coming from mixed Hodge theory).

Remark

- For arrangements of hyperplanes, we recover the (projective) Brieskorn-Orlik-Solomon theorem, with only weight $\mathrm{gr}_{2 k} \mathrm{H}^{k}$.
- The weight-graded quotients $\operatorname{gr}_{2 k}^{W} H^{\bullet}(\mathcal{L}, \mathcal{M}, \chi)$ are combinatorial invariants, but not the whole motive $H^{\bullet}(\mathcal{L}, \mathcal{M}, \chi)$.

Explicit computations: the tame case

Combinatorial notion of tame bi-arrangements of hyperplanes.

- Generic bi-arrangements are tame
- tame \Longrightarrow exact.

Explicit computations: the tame case

Combinatorial notion of tame bi-arrangements of hyperplanes.

- Generic bi-arrangements are tame
- tame \Longrightarrow exact.

Proposition

For a tame bi-arrangement of hyperplanes $(\mathcal{L}, \mathcal{M}, \chi)$, the Orlik-Solomon bicomplex $A_{\bullet, \bullet}(\mathcal{L}, \mathcal{M}, \chi)$ is an explicit sub-quotient of $A_{\bullet}(\mathcal{L}) \otimes A_{\bullet}(\mathcal{M})^{\vee}$.

Explicit computations: the tame case

Combinatorial notion of tame bi-arrangements of hyperplanes.

- Generic bi-arrangements are tame
- tame \Longrightarrow exact.

Proposition

For a tame bi-arrangement of hyperplanes $(\mathcal{L}, \mathcal{M}, \chi)$, the Orlik-Solomon bicomplex $A_{\bullet, \bullet}(\mathcal{L}, \mathcal{M}, \chi)$ is an explicit sub-quotient of $A_{\bullet}(\mathcal{L}) \otimes A_{\bullet}(\mathcal{M})^{\vee}$.

Example

$$
A_{\bullet, \bullet}=\Lambda^{\bullet}\left(e_{1}, e_{2}\right) \otimes \Lambda^{\bullet}\left(f_{1}^{\vee}\right) /\left(d\left(e_{1} \wedge e_{2}\right) \otimes f_{1}^{\vee}\right)
$$

Explicit computations: the tame case

Combinatorial notion of tame bi-arrangements of hyperplanes.

- Generic bi-arrangements are tame
- tame \Longrightarrow exact.

Proposition

For a tame bi-arrangement of hyperplanes $(\mathcal{L}, \mathcal{M}, \chi)$, the Orlik-Solomon bicomplex $A_{\bullet, \bullet}(\mathcal{L}, \mathcal{M}, \chi)$ is an explicit sub-quotient of $A_{\bullet}(\mathcal{L}) \otimes A_{\bullet}(\mathcal{M})^{\vee}$.

Example

$$
A_{\bullet, \bullet}=\Lambda^{\bullet}\left(e_{1}, e_{2}\right) \otimes \Lambda^{\bullet}\left(f_{1}^{\vee}\right) /\left(d\left(e_{1} \wedge e_{2}\right) \otimes f_{1}^{\vee}\right)
$$

Example

One can define multiple zeta bi-arrangements $\mathcal{Z}\left(n_{1}, \ldots, n_{r}\right)$ that are tame.

Basic cellular integrals

Given a permutation $\sigma \in \mathfrak{S}_{N}$, define on $\mathbb{P}^{N} \backslash \bigcup\left\{z_{i}=z_{j}\right\}$:

$$
\tilde{f}_{\sigma}=\prod_{i \in \mathbb{Z} / N \mathbb{Z}} \frac{z_{i}-z_{i+1}}{z_{\sigma(i)}-z_{\sigma(i+1)}} \quad \text { and } \quad \tilde{\omega}_{\sigma}=\frac{\mathrm{d} z_{1} \ldots \mathrm{~d} z_{N}}{\prod_{i \in \mathbb{Z} / N \mathbb{Z}}\left(z_{\sigma(i)}-z_{\sigma(i+1)}\right)},
$$

both PGL_{2}-invariant, hence we get $f_{\sigma} \in \mathcal{O}\left(\mathcal{M}_{0, N}\right)$, and $\omega_{\sigma} \in \Omega^{n}\left(\mathcal{M}_{0, N}\right)$ after dividing by an invariant volume form on PGL_{2}.

Basic cellular integrals

Given a permutation $\sigma \in \mathfrak{S}_{N}$, define on $\mathbb{P}^{N} \backslash \bigcup\left\{z_{i}=z_{j}\right\}$:

$$
\tilde{f}_{\sigma}=\prod_{i \in \mathbb{Z} / N \mathbb{Z}} \frac{z_{i}-z_{i+1}}{z_{\sigma(i)}-z_{\sigma(i+1)}} \quad \text { and } \quad \tilde{\omega}_{\sigma}=\frac{\mathrm{d} z_{1} \ldots \mathrm{~d} z_{N}}{\prod_{i \in \mathbb{Z} / N \mathbb{Z}}\left(z_{\sigma(i)}-z_{\sigma(i+1)}\right)},
$$

both PGL_{2}-invariant, hence we get $f_{\sigma} \in \mathcal{O}\left(\mathcal{M}_{0, N}\right)$, and $\omega_{\sigma} \in \Omega^{n}\left(\mathcal{M}_{0, N}\right)$ after dividing by an invariant volume form on PGL_{2}.

Basic cellular integral:

$$
I_{\sigma}(k)=\int_{\delta_{n}} f_{\sigma}^{k} \omega_{\sigma}
$$

It converges iff σ is a convergent permutation ("dinner party problem").

Basic cellular integrals

Given a permutation $\sigma \in \mathfrak{S}_{N}$, define on $\mathbb{P}^{N} \backslash \bigcup\left\{z_{i}=z_{j}\right\}$:

$$
\tilde{f}_{\sigma}=\prod_{i \in \mathbb{Z} / N \mathbb{Z}} \frac{z_{i}-z_{i+1}}{z_{\sigma(i)}-z_{\sigma(i+1)}} \quad \text { and } \quad \tilde{\omega}_{\sigma}=\frac{\mathrm{d} z_{1} \ldots \mathrm{~d} z_{N}}{\prod_{i \in \mathbb{Z} / N \mathbb{Z}}\left(z_{\sigma(i)}-z_{\sigma(i+1)}\right)},
$$

both PGL_{2}-invariant, hence we get $f_{\sigma} \in \mathcal{O}\left(\mathcal{M}_{0, N}\right)$, and $\omega_{\sigma} \in \Omega^{n}\left(\mathcal{M}_{0, N}\right)$ after dividing by an invariant volume form on PGL_{2}.

Basic cellular integral:

$$
I_{\sigma}(k)=\int_{\delta_{n}} f_{\sigma}^{k} \omega_{\sigma}
$$

It converges iff σ is a convergent permutation ("dinner party problem").
Number of convergent configurations, up to dihedral symmetries:

N	4	5	6	7	8	9	10	11
C_{N}	0	1	1	5	17	105	771	7028

Basic cellular integrals

Given a permutation $\sigma \in \mathfrak{S}_{N}$, define on $\mathbb{P}^{N} \backslash \bigcup\left\{z_{i}=z_{j}\right\}$:

$$
\tilde{f}_{\sigma}=\prod_{i \in \mathbb{Z} / N \mathbb{Z}} \frac{z_{i}-z_{i+1}}{z_{\sigma(i)}-z_{\sigma(i+1)}} \quad \text { and } \quad \tilde{\omega}_{\sigma}=\frac{\mathrm{d} z_{1} \ldots \mathrm{~d} z_{N}}{\prod_{i \in \mathbb{Z} / N \mathbb{Z}}\left(z_{\sigma(i)}-z_{\sigma(i+1)}\right)},
$$

both PGL_{2}-invariant, hence we get $f_{\sigma} \in \mathcal{O}\left(\mathcal{M}_{0, N}\right)$, and $\omega_{\sigma} \in \Omega^{n}\left(\mathcal{M}_{0, N}\right)$ after dividing by an invariant volume form on PGL_{2}.

Basic cellular integral:

$$
I_{\sigma}(k)=\int_{\delta_{n}} f_{\sigma}^{k} \omega_{\sigma}
$$

It converges iff σ is a convergent permutation ("dinner party problem").
Number of convergent configurations, up to dihedral symmetries:

$$
\begin{array}{c|cccccccc}
N & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline C_{N} & 0 & 1 & 1 & 5 & 17 & 105 & 771 & 7028
\end{array}
$$

$N=5$: only ${ }_{5} \pi=[5,2,4,1,3], \quad N=6$: only ${ }_{6} \pi=[6,2,4,1,5,3]$

Vanishing for basic cellular integrals

Theorem (Brown 2016)
Suppose that $A, B \subset \mathcal{M}_{0, N}$ are cellular boundary divisors with no common irreducible components. Let $n=N-3$. Then

$$
\operatorname{gr}_{2}^{W} \mathrm{H}_{A, B}=\operatorname{gr}_{2 n-2}^{W} \mathrm{H}_{A, B}=0
$$

and $\operatorname{gr}_{0}^{W} \mathrm{H}_{A, B}$ and $\mathrm{gr}_{2 n}^{W} \mathrm{H}_{A, B}$ are both 1-dimensional.

Vanishing for basic cellular integrals

Theorem (Brown 2016)

Suppose that $A, B \subset \mathcal{M}_{0, N}$ are cellular boundary divisors with no common irreducible components. Let $n=N-3$. Then

$$
\operatorname{gr}_{2}^{W} \mathrm{H}_{A, B}=\operatorname{gr}_{2 n-2}^{W} \mathrm{H}_{A, B}=0
$$

and $\operatorname{gr}_{0}^{W} \mathrm{H}_{A, B}$ and $\mathrm{gr}_{2 n}^{W} \mathrm{H}_{A, B}$ are both 1-dimensional.
Hence for the unique convergent configurations for $N=5,6$, we must have

$$
\operatorname{gr}_{\bullet}^{W} H_{A, B}= \begin{cases}\mathbb{Q}(0) \oplus \mathbb{Q}(-2) & \text { for } N=5, \\ \mathbb{Q}(0) \oplus \mathbb{Q}(-3) & \text { for } N=6\end{cases}
$$

Vanishing for basic cellular integrals

Theorem (Brown 2016)

Suppose that $A, B \subset \mathcal{M}_{0, N}$ are cellular boundary divisors with no common irreducible components. Let $n=N-3$. Then

$$
\operatorname{gr}_{2}^{W} \mathrm{H}_{A, B}=\operatorname{gr}_{2 n-2}^{W} \mathrm{H}_{A, B}=0
$$

and $\operatorname{gr}_{0}^{W} \mathrm{H}_{A, B}$ and $\mathrm{gr}_{2 n}^{W} \mathrm{H}_{A, B}$ are both 1-dimensional.
Hence for the unique convergent configurations for $N=5,6$, we must have

$$
\operatorname{gr}_{\bullet}^{W} H_{A, B}= \begin{cases}\mathbb{Q}(0) \oplus \mathbb{Q}(-2) & \text { for } N=5, \\ \mathbb{Q}(0) \oplus \mathbb{Q}(-3) & \text { for } N=6\end{cases}
$$

Those are the Apéry motives! They give the linear combinations of 1 and $\zeta(2)$ for $N=5$, resp. 1 and $\zeta(3)$ for $N=6$, used in the irrationality proofs.

Flat poset for $\zeta(2)$

35 may be set red or blue morphism red \rightarrow blue KernelObjectFunctorial TotalComplexFunctorial

Take the image!
Irrelevant for $\zeta(2)$: $101 \rightarrow 101 \hookrightarrow 101$

Relevant for $\zeta(3)$:
$1011 \rightarrow 1001 \hookrightarrow 1101$

More basic cellular integrals

$N=7$

Two dual pairs and one self-dual configuration:

$$
\begin{gathered}
{ }_{7} \pi_{1}=[7,2,4,1,6,3,5] \quad \longleftrightarrow{ }_{7} \pi_{1}^{\vee}=[7,2,5,1,4,6,3] \\
{ }_{7} \pi_{2}=[7,2,4,6,1,3,5] \longleftrightarrow{ }_{7} \pi_{1}^{\vee}=[7,3,6,2,5,1,4] \\
{ }_{7} \pi_{3}=[7,2,5,1,3,6,4]={ }_{7} \pi_{3}^{\vee}
\end{gathered}
$$

More basic cellular integrals

$N=7$

Two dual pairs and one self-dual configuration:

$$
\begin{gathered}
{ }_{7} \pi_{1}=[7,2,4,1,6,3,5] \quad \longleftrightarrow{ }_{7} \pi_{1}^{\vee}=[7,2,5,1,4,6,3] \\
{ }_{7} \pi_{2}=[7,2,4,6,1,3,5] \longleftrightarrow{ }_{7} \pi_{1}^{\vee}=[7,3,6,2,5,1,4] \\
{ }_{7} \pi_{3}=[7,2,5,1,3,6,4]={ }_{7} \pi_{3}^{\vee}
\end{gathered}
$$

Experimentally, all give linear combinations of $1, \zeta(2)$ and $\zeta(4)$.

More basic cellular integrals

$N=7$

Two dual pairs and one self-dual configuration:

$$
\begin{gathered}
{ }_{7} \pi_{1}=[7,2,4,1,6,3,5] \quad \longleftrightarrow{ }_{7} \pi_{1}^{\vee}=[7,2,5,1,4,6,3] \\
{ }_{7} \pi_{2}=[7,2,4,6,1,3,5] \longleftrightarrow{ }_{7} \pi_{1}^{\vee}=[7,3,6,2,5,1,4] \\
{ }_{7} \pi_{3}=[7,2,5,1,3,6,4]={ }_{7} \pi_{3}^{\vee}
\end{gathered}
$$

Experimentally, all give linear combinations of $1, \zeta(2)$ and $\zeta(4)$. With MotivesForBiarrangements, based on CAP, we can confirm:

$$
\mathrm{gr}_{\bullet}^{W} \mathrm{H}_{A, B}=\mathbb{Q}(0) \oplus \mathbb{Q}(-2) \oplus \mathbb{Q}(-4)
$$

More basic cellular integrals

$N=7$

Two dual pairs and one self-dual configuration:

$$
\begin{gathered}
{ }_{7} \pi_{1}=[7,2,4,1,6,3,5] \quad \longleftrightarrow \quad{ }_{7} \pi_{1}^{\vee}=[7,2,5,1,4,6,3] \\
{ }_{7} \pi_{2}=[7,2,4,6,1,3,5] \\
{ }_{7} \pi_{3}=[7,2,5,1,3,6,4]=\left[7,4,4 \pi_{3}^{\vee}\right.
\end{gathered}
$$

Experimentally, all give linear combinations of $1, \zeta(2)$ and $\zeta(4)$. With MotivesForBiarrangements, based on CAP, we can confirm:

$$
\operatorname{gr}^{W} \mathrm{H}_{A, B}=\mathbb{Q}(0) \oplus \mathbb{Q}(-2) \oplus \mathbb{Q}(-4)
$$

$N=8$
Among the 17 convergent configurations, let us note

$$
{ }_{8} \pi_{8}=[8,2,5,1,6,4,7,3] \longleftrightarrow{ }_{8} \pi_{8}^{\vee}=[8,2,4,1,7,5,3,6]
$$

More basic cellular integrals

$N=7$

Two dual pairs and one self-dual configuration:

$$
\begin{gathered}
{ }_{7} \pi_{1}=[7,2,4,1,6,3,5] \quad \longleftrightarrow{ }_{7} \pi_{1}^{\vee}=[7,2,5,1,4,6,3] \\
{ }_{7} \pi_{2}=[7,2,4,6,1,3,5] \longleftrightarrow{ }_{7} \pi_{1}^{\vee}=[7,3,6,2,5,1,4] \\
{ }_{7} \pi_{3}=[7,2,5,1,3,6,4]={ }_{7} \pi_{3}^{\vee}
\end{gathered}
$$

Experimentally, all give linear combinations of $1, \zeta(2)$ and $\zeta(4)$. With MotivesForBiarrangements, based on CAP, we can confirm:

$$
\operatorname{gr}^{W} \mathrm{H}_{A, B}=\mathbb{Q}(0) \oplus \mathbb{Q}(-2) \oplus \mathbb{Q}(-4)
$$

$N=8$
Among the 17 convergent configurations, let us note

$$
{ }_{8} \pi_{8}=[8,2,5,1,6,4,7,3] \longleftrightarrow{ }_{8} \pi_{8}^{\vee}=[8,2,4,1,7,5,3,6]
$$

With MotivesForBiarrangements, based on CAP, we can confirm:

$$
\operatorname{gr}_{\bullet}^{W} \mathrm{H}_{A, B}= \begin{cases}\mathbb{Q}(0) \oplus \mathbb{Q}(-3) \oplus \mathbb{Q}(-5) & \text { for }{ }_{8} \pi_{8} \\ \mathbb{Q}(0) \oplus \mathbb{Q}(-2) \oplus \mathbb{Q}(-5) & \text { for }{ }_{8} \pi_{8}^{\vee}\end{cases}
$$

Bibliography

Francis Brown

- Multiple zeta values and periods of moduli spaces $\mathcal{M}_{0, n}$, Ann. Scient. Éc. Norm. Sup. (2009)
- Mixed Tate motives over \mathbb{Z}, Annals of Mathematics (2012)
- Irrationality proofs for zeta values, moduli spaces and dinner parties, Mosc. J. Comb. Number Theory (2016)

Clément Dupont

- Relative cohomology of bi-arrangements, Trans. Amer. Math. Soc. (2017)
- Odd zeta motive and linear forms in odd zeta values, Compos. Math. (2018), with appendix by Don Zagier

Javier Fresán \& José Burgos Gil

Multiple zeta values: from numbers to motives, Clay Mathematics Proceedings, to appear.

[^0]: ${ }^{1}$ Fusion of Université Paris 4 and Université Paris 6 Pierre et Marie Curie
 ${ }^{2}$ To be merged next year with Université Paris 5 René Descartes, into Université de Paris!

