CAP in QPA

Jystein Skartseeterhagen

Department of Mathematical Sciences
Norwegian University of Science and Technology

First CAP Days, 2018-08-28

Norwegian University of Science and Technology

(Parts of this presentation are adapted from Introduction to QPA,
my joint talk with @yvind Solberg at the Third GAP Days in Trondheim, 2015)

®@NTNU

What is QPA?

— QPA: “Quivers and Path Algebras”

— GAP package for computations with quotients of path algebras
and their modules

Part 1

So what are these “quivers”, anyway?

Quivers

Quivers

a b 1——=0> b

1—2—3

Quivers

a b 1——=0> b

1—2—3

Quiver: oriented graph (loops and multiple edges allowed)

Paths

Q: 1-2.2.b.3

Paths

Q: 1-2.2.b.3

Paths in Q:

Paths

Q: 1-2.2.b.3

Paths in Q:
— Length 0: ey, &5, e5 (vertices/trivial paths)

Paths

Q: 1-2.2.b.3

Paths in Q:
— Length 0: ey, &5, e5 (vertices/trivial paths)
— Length 1: a, b (arrows)

Paths

Q: 1-2.2 5.3
Paths in Q:

— Length 0: ey, &5, e5 (vertices/trivial paths)
— Length 1: a, b (arrows)
— Length 2: ba (concatenation of a and b)

Path algebras

Q:1-2.2_P. 3

k a field

Path algebras

Q:1-2.2_P. 3

k a field

} ~+ path algebra kQ

Path algebras

Q:1-2.2_P. 3

~+ path algebra kQ
k afield

— Basis: {ey, e, €3,a, b, ba}

Path algebras

. a b
Q: 1 -2 -3 } ~+ path algebra kQ

k a field

— Basis: {ey, e, €3,a, b, ba}

— Multiplication:
€18 =&
e-e=0

€&-a=a
ei-a=20
b-a=ba

7 @NTNU

Path algebras

Q: 1-23-2_b. 3

~+ path algebra kQ
k afield

— Basis: {ey, e, €3,a, b, ba}
— Multiplication:

ey €& e a b ba

. e (=] 0 0 0 0 0

6161 = & 0 e 0 a 0 0
e -6=0 es|/ 0 0 e 0 b ba
e-a=a ala 0 0 0 0 O
e-a= 0 b 0 b 0 ba 0 0
b.-a-ba balba 0 0O O 0 O

v ®NTNU

Representations

Given

Q 1-2.2_P. 3

Want to make a representation R of Q.

Representations

Given
a

Q 1-2.2_P. 3

Want to make a representation R of Q.

R oe— 00—

Start with the quiver, and put

Representations

Given
a

Q 1-2.2_P. 3

Want to make a representation R of Q.

R: V14>V24>V3

Start with the quiver, and put

— a vector space at each vertex,

Representations

Given
Q 1-—23.2_b.3

Want to make a representation R of Q.

R: V,—o v,y

Start with the quiver, and put
— a vector space at each vertex,
— a linear transformation on each arrow.

8 @NTNU

Homomorphisms of representations

Homomorphisms of representations

fa fb

R: V1 V2 V3
L
S: Wy 2w, %y,

A homomorphism h: R — S is given by:

Homomorphisms of representations

fa fb

R: V1 V2 V3
I
S: Wy 2w, % wy,

A homomorphism h: R — S is given by:
— linear maps h; for every vertex i,

Homomorphisms of representations

fa fb

R: V1 V2 V3
Lh h1l o hzl o h3l
S: Wy 2w, % wy,

A homomorphism h: R — S is given by:
— linear maps h; for every vertex i,
— commuting with the linear maps for the arrows.

Representations and modules

mOd kQ ~ Repk Q

Representations and modules

mOd kQ ~ Repk Q

/.

finitely generated kQ-modules

Representations and modules

mOd kQ ~ Repk Q

/. N\

finitely generated kQ-modules representations of Q over k

Part 2

A brief history of QPA

A brief history of QPA

— Started by Ed Green at Virginia Tech ca 1998(?)

— Originally called HOPF

— Changed and extended by many people over the years
— Name changed to QPA at some point

— Adopted by @yvind Solberg (NTNU, Trondheim) in 2010

QPA, ca. 2014

crof cuo? \KQL Al HHRGM ?ﬁg‘rc%g L?L
; i ¥ ; i
N N ey (Nt
ﬂj-‘ ﬁﬂl‘ltrqumll}”ﬂ H- f
> /] f I
/! Lt

i [
| = ! l i "
¥ % "lw’lfﬂl"f H“!‘l il S
| 7 = = “Jf '"(‘.—‘;l'“ 'If\ Q
g“x = i il I
WHY 15 THIS WHERE CouLD THIS BRIDGE s
STRUCTURE HERE 7 POSSIBLY LEAD ? THIS SIcN DQESN'T

HELP ME MucH.

/

@

WHAT A HORRIBLY DESIGNED GooD GoD! WHAT THE HELL
STREET, MOST INEFFICIENT.

Rl

(/i \;57@
7
i

http://www.abstrusegoose.com/432 (CC BY-NC 3.0 US)

®@NTNU

https://creativecommons.org/licenses/by-nc/3.0/us/

What do we do?

What do we do?

$ mkdir ~/src/gpa?2
$

What do we do?

$ mkdir ~/src/gpa?2
$ cd ~/src/gpa?2
$

What do we do?

$ mkdir ~/src/gpa2
$ cd ~/src/gpa?2
$ git init

What do we do?

$ mkdir ~/src/gpa2

$ cd ~/src/gpa?2

$ git init

Initialized empty Git repository in

/home/oysteini/src/gpa?2
$

What do we do?

$ mkdir ~/src/gpa2

$ cd ~/src/gpa?2

$ git init

Initialized empty Git repository in

/home/oysteini/src/gpa?2
S mkdir 1lib
$

What do we do?

$ mkdir ~/src/gpa2

$ cd ~/src/gpa?2

$ git init

Initialized empty Git repository in
/home/oysteini/src/gpa?2

$ mkdir 1lib

$ emacs lib/quiver.gd

What do we do?

$ mkdir ~/src/gpa2
$ cd ~/src/gpa?2
$ git init

Initialized empty Git repository in
/home/oysteini/src/gpa?2

$ mkdir 1lib

$ emacs lib/quiver.gd

. and soon

QPA version 2

— Complete rewrite of QPA
— Aim: Cleaner and more consistent code
— Started in 2015, still not ready to replace QPA1

Part 3

CAP and us

Some of the problems in QPA1

— Much of QPA is really about certain abelian categories and
functors

— But not explicitly: Nothing in GAP lets us say “this is a category”
or “this is a functor”

— Have many functions that deal with categorical and functorial
aspects, but not in a consistent or complete manner

— Have arbitrarily added (and named) functions that are “too
general” — they are applicable in any (abelian) category

Example: Kernel

M—N

Example: Kernel

Ker f M—N

Example: Kernel

Kerf™ . p—f o N

Example: Kernel

Kerf™ . p—f o N

d

X

Example: Kernel

Example: Kernel

Kerf™ . p—f o N M— >N

S b,

A
|
|
X M —— N

Example: Kernel

Kerf™ . p—f o N Kerf-" - p— - N
A
| / lu lu
X Kerf " vy o N

Example: Kernel

Kerf™ . p—f o N Kerf-" - p— - N
A |
| | llt lu
| / Y . ,
X Kerf' " pr — o N

Example: Chain complexes

C: . —>Cg—>C1 CO C_1 —)C_2—>

Example: Chain complexes

C: . —>Cg—>C1 CO C_1 —)C_2—>

Represented by repeating list (rq, r2, r3) of differentials:

Example: Chain complexes

Ci5CBC BCdC, E5C

Represented by repeating list (rq, r2, r3) of differentials:

dy dg d7 ds ds dy dz do

Example: Chain complexes

a. a a a_
C: =5 C3CH5C>Cq1—HCo—--

Represented by repeating list (rq, r2, r3) of differentials:

Example: Chain complexes

a. a a a_
C: =5 C3CH5C>Cq1—HCo—--

Represented by repeating list (rq, r2, r3) of differentials:

Example: Chain complexes

Ci5CBC BCdC, E5C

Represented by repeating list (rq, r2, r3) of differentials:

Represented by initial differential d; and inductive function f:

Example: Chain complexes

C: . —>Cg—>C1 CO C_1 —)C_2—>

Represented by repeating list (rq, r2, r3) of differentials:

Represented by initial differential d; and inductive function f:

ads

Example: Chain complexes

C: . —>Cg—>C1 CO C_1 —)C_2—>

Represented by repeating list (rq, r2, r3) of differentials:

Example: Chain complexes

C: . —>Cg—>C1 CO C_1 —)C_2—>

Represented by repeating list (rq, r2, r3) of differentials:

Example: Chain complexes

C: . —>Cg—>C1 CO C_1 —)C_2—>

Represented by repeating list (rq, r2, r3) of differentials:

Status QPA project early 2015

Wanted to:
— Rewrite QPA in a cleaner and nicer way
— Move functionality for chain complexes into a separate package

Status QPA project early 2015

Wanted to:
— Rewrite QPA in a cleaner and nicer way
— Move functionality for chain complexes into a separate package

One big missing piece:
— General structures for categories and functors

Status QPA project early 2015

Wanted to:
— Rewrite QPA in a cleaner and nicer way
— Move functionality for chain complexes into a separate package

One big missing piece:
— General structures for categories and functors

. and then we learned about CAP.

Result

— QPA2 is written with CAP in mind (almost) from the beginning

Categories in QPA2

Categories in QPA2

vec k

Categories in QPA2

Rep, Q

vec k

Categories in QPA2

Rep, Q k3 ——k —— k2

vec k

Categories in QPA2

mod kQ

Rep, Q

vec k

K8 — > k——>Kk?

Categories in QPA2

mod kQ

Rep, Q

vec k

K8 — > k——>Kk?

Functors in QPA2: Hom and tensor (work in progress)

Hom(aM, —): A-mod — vec k

Functors in QPA2: Hom and tensor (work in progress)

Homa(aM, —): A-mod — vec k
Homa(aMpg, —): A-mod — B-mod

Functors in QPA2: Hom and tensor (work in progress)

Homa(aM, —): A-mod — vec k
Homa(aMpg, —): A-mod — B-mod
Homa(aMpg, —): A-mod-C — B-mod-C

Functors in QPA2: Hom and tensor (work in progress)

Homa(aM, —): A-mod — vec k
Homa(aMpg, —): A-mod — B-mod
Homa(aMpg, —): A-mod-C — B-mod-C

My @4 —: A-mod — vec k

Functors in QPA2: Hom and tensor (work in progress)

Homa(aM, —): A-mod — vec k
Homa(aMpg, —): A-mod — B-mod
Homa(aMpg, —): A-mod-C — B-mod-C

Mp®4—: A-mod — vec k
gMs ®4 —: A-mod — B-mod

Functors in QPA2: Hom and tensor (work in progress)

Homa(aM, —): A-mod — vec k
Homa(aMpg, —): A-mod — B-mod
Homa(aMpg, —): A-mod-C — B-mod-C

My @4 —: A-mod — vec k
gMs ®4 —: A-mod — B-mod
gMjy ®4 —: A-mod-C — B-mod-C

Main advantages of using CAP (for us)

Main advantages of using CAP (for us)

— CAP gives us a consistent and complete interface for
(abelian) categories.

Main advantages of using CAP (for us)

— CAP gives us a consistent and complete interface for
(abelian) categories.

— Clear separation between general things that can be done in any
abelian category and the things that are specific to our
categories

Main advantages of using CAP (for us)

— CAP gives us a consistent and complete interface for
(abelian) categories.

— Clear separation between general things that can be done in any
abelian category and the things that are specific to our
categories

— Categories and functors are objects

Main advantages of using CAP (for us)

— CAP gives us a consistent and complete interface for
(abelian) categories.

— Clear separation between general things that can be done in any
abelian category and the things that are specific to our
categories

— Categories and functors are objects
— CAP makes our code better structured

Possible disadvantages

Possible disadvantages

— CAP is big and complex

Possible disadvantages

— CAP is big and complex
— Deeply nested function calls complicate debugging

Possible disadvantages

— CAP is big and complex
— Deeply nested function calls complicate debugging
— Heavy use of CAP could slow down the code

Possible disadvantages

— CAP is big and complex

— Deeply nested function calls complicate debugging

— Heavy use of CAP could slow down the code

— Confusing terminology: “GAP categories” and “CAP categories”

Possible disadvantages: Response

— CAP is big and complex
— Deeply nested function calls complicate debugging

— Heavy use of CAP could slow down the code

— Confusing terminology: “GAP categories” and “CAP categories”

Possible disadvantages: Response

— CAP is big and complex
... but still reasonably easy to use in simple ways

— Deeply nested function calls complicate debugging

— Heavy use of CAP could slow down the code

— Confusing terminology: “GAP categories” and “CAP categories”

Possible disadvantages: Response

— CAP is big and complex
... but still reasonably easy to use in simple ways

— Deeply nested function calls complicate debugging
... but that is probably necessary

— Heavy use of CAP could slow down the code

— Confusing terminology: “GAP categories” and “CAP categories”

Possible disadvantages: Response

— CAP is big and complex
... but still reasonably easy to use in simple ways

— Deeply nested function calls complicate debugging
... but that is probably necessary

— Heavy use of CAP could slow down the code
... but there might be workarounds, such as turning off caching

— Confusing terminology: “GAP categories” and “CAP categories”

Possible disadvantages: Response

— CAP is big and complex
... but still reasonably easy to use in simple ways

— Deeply nested function calls complicate debugging
... but that is probably necessary

— Heavy use of CAP could slow down the code
... but there might be workarounds, such as turning off caching

”

— Confusing terminology: “GAP categories” and “CAP categories
... but that is GAP’s fault, not CAP’s

Wish list

Wish list

— Parametrized categories

Wish list

— Parametrized categories: mod x

Wish list

— Parametrized categories: mod x ~ mod A

Wish list

— Parametrized categories: mod x ~ mod A
— Parametrized functors

Wish list

— Parametrized categories: mod x ~ mod A
— Parametrized functors: Hom,(x, —)

Wish list

— Parametrized categories: mod x ~ mod A
— Parametrized functors: Hom,.(x, —) ~» Homa(M, —)

Wish list

— Parametrized categories: mod x ~ mod A
— Parametrized functors: Hom,.(x, —) ~» Homa(M, —)
— Contravariant functors

Wish list

— Parametrized categories: mod x ~ mod A

— Parametrized functors: Hom,.(x, —) ~» Homa(M, —)
— Contravariant functors

— Functors with two arguments: Hom(—, —)

Wish list

— Parametrized categories: mod x ~ mod A

— Parametrized functors: Hom,.(x, —) ~» Homa(M, —)
— Contravariant functors

— Functors with two arguments: Hom(—, —)

— CAP should,

Wish list

— Parametrized categories: mod x ~ mod A

— Parametrized functors: Hom, (x, —) ~» Homa(M, —)
— Contravariant functors

— Functors with two arguments: Hom(—, —)

— CAP should, like all the best free software projects,

Wish list

— Parametrized categories: mod x ~ mod A

— Parametrized functors: Hom,.(x, —) ~» Homa(M, —)
— Contravariant functors

— Functors with two arguments: Hom(—, —)

— CAP should, like all the best free software projects,
have a cute animal as mascot.

Wish list

— Parametrized categories: mod x ~ mod A
— Parametrized functors: Hom,.(x, —) ~» Homa(M, —)
— Contravariant functors

— Functors with two arguments: Hom(—, —)

— CAP should, like all the best free software projects,
have a cute animal as mascot.
Suggestion:

Wish list

— Parametrized categories: mod x ~ mod A
— Parametrized functors: Hom,.(x, —) ~» Homa(M, —)
— Contravariant functors

— Functors with two arguments: Hom(—, —)

— CAP should, like all the best free software projects,
have a cute animal as mascot.
Suggestion: A cat

Wish list

— Parametrized categories: mod x ~ mod A
— Parametrized functors: Hom,.(x, —) ~» Homa(M, —)
— Contravariant functors

— Functors with two arguments: Hom(—, —)

— CAP should, like all the best free software projects,
have a cute animal as mascot.
Suggestion: A cat wearing a cap

Wish list

— Parametrized categories: mod x ~ mod A
— Parametrized functors: Hom,.(x, —) ~» Homa(M, —)
— Contravariant functors

— Functors with two arguments: Hom(—, —)

— CAP should, like all the best free software projects,
have a cute animal as mascot.
Suggestion: A cat wearing a cap with the text “CAP”

	What is it all about?
	Quivers
	Representations
	Modules

	A brief history of QPA
	CAP and us
	Problems
	Categories and functors in QPA
	Advantages and disadvantages

