CAP in QPA

Øystein Skartsæterhagen Department of Mathematical Sciences Norwegian University of Science and Technology First CAP Days, 2018-08-28

(Parts of this presentation are adapted from *Introduction to QPA*, my joint talk with Øyvind Solberg at the Third GAP Days in Trondheim, 2015)

What is QPA?

- QPA: "Quivers and Path Algebras"
- GAP package for computations with quotients of path algebras and their modules

Part 1

So what are these "quivers", anyway?

Quivers

Quivers

$$1 \xrightarrow{a} 2 \xrightarrow{b} 3 \qquad 1 \xrightarrow{a} 2 \qquad 1 \xrightarrow{b} 2 \qquad 1 \xrightarrow{b} \qquad 0 \xrightarrow{a} \qquad 0 \xrightarrow{b} \qquad 0 \xrightarrow{b}$$

Quivers

$$1 \xrightarrow{a} 2 \xrightarrow{b} 3 \qquad 1 \xrightarrow{a} 2 \qquad 1 \xrightarrow{b} 2$$

Quiver: oriented graph (loops and multiple edges allowed)

$$Q: 1 \xrightarrow{a} 2 \xrightarrow{b} 3$$

$$Q: 1 \xrightarrow{a} 2 \xrightarrow{b} 3$$

Paths in Q:

$$Q: 1 \xrightarrow{a} 2 \xrightarrow{b} 3$$

Paths in Q:

— Length 0: e_1 , e_2 , e_3 (vertices/trivial paths)

$$Q: 1 \xrightarrow{a} 2 \xrightarrow{b} 3$$

Paths in Q:

- Length 0: e_1 , e_2 , e_3 (vertices/trivial paths)
- Length 1: a, b (arrows)

$$Q: 1 \xrightarrow{a} 2 \xrightarrow{b} 3$$

Paths in Q:

- Length 0: e_1 , e_2 , e_3 (vertices/trivial paths)
- Length 1: a, b (arrows)
- Length 2: ba (concatenation of a and b)

Q:
$$1 \xrightarrow{a} 2 \xrightarrow{b} 3$$

k a field

$$\left. \begin{array}{ccc} Q \colon & 1 \stackrel{a}{\longrightarrow} 2 \stackrel{b}{\longrightarrow} 3 \\ k \text{ a field} \end{array} \right\} \rightsquigarrow \text{path algebra } kQ$$

$$Q: 1 \xrightarrow{a} 2 \xrightarrow{b} 3$$
 $\downarrow path algebra kQ$ $\downarrow k$ a field

— Basis: $\{e_1, e_2, e_3, a, b, ba\}$

$$Q: 1 \xrightarrow{a} 2 \xrightarrow{b} 3$$
 $\downarrow k \text{ a field}$ $\downarrow k \text{ a field}$

- Basis: $\{e_1, e_2, e_3, a, b, ba\}$
- Multiplication:

$$e_{1} \cdot e_{1} = e_{1}$$

$$e_{1} \cdot e_{2} = 0$$

$$e_{2} \cdot a = a$$

$$e_{1} \cdot a = 0$$

$$b \cdot a = ba$$

$$Q: 1 \xrightarrow{a} 2 \xrightarrow{b} 3$$
 \downarrow path algebra kQ

- Basis: $\{e_1, e_2, e_3, a, b, ba\}$
- Multiplication:

$$e_1 \cdot e_1 = e_1$$
 $e_1 \cdot e_2 = 0$
 $e_2 \cdot a = a$
 $e_1 \cdot a = 0$
 $b \cdot a = ba$

٠	<i>e</i> ₁	e_2	e ₃	а	b	ba
<i>e</i> ₁	<i>e</i> ₁	0	0	0	0	0
e_2	0	e_2	0	а	0	0
e_3	0	0	e_3	0	b	ba
а	а	0	0	0	0	0
b	0	b	0	ba	0	0
ba	e ₁ 0 0 a 0 ba	0	0	0	0	0

Given

$$Q: 1 \xrightarrow{a} 2 \xrightarrow{b} 3$$

Want to make a representation R of Q.

Given

$$Q: 1 \xrightarrow{a} 2 \xrightarrow{b} 3$$

Want to make a representation R of Q.

$$R: \bullet \longrightarrow \bullet \longrightarrow \bullet$$

Start with the quiver, and put

Given

$$Q: 1 \xrightarrow{a} 2 \xrightarrow{b} 3$$

Want to make a representation R of Q.

$$R: V_1 \longrightarrow V_2 \longrightarrow V_3$$

Start with the quiver, and put

a vector space at each vertex,

Given

$$Q: 1 \xrightarrow{a} 2 \xrightarrow{b} 3$$

Want to make a representation R of Q.

$$R: V_1 \xrightarrow{f_a} V_2 \xrightarrow{f_b} V_3$$

Start with the quiver, and put

- a vector space at each vertex,
- a linear transformation on each arrow.

$$R: V_1 \xrightarrow{f_a} V_2 \xrightarrow{f_b} V_3$$

$$S: W_1 \xrightarrow{g_a} W_2 \xrightarrow{g_b} W_3$$

$$R: V_1 \xrightarrow{f_a} V_2 \xrightarrow{f_b} V_3$$

$$\downarrow h$$

$$S: W_1 \xrightarrow{g_a} W_2 \xrightarrow{g_b} W_3$$

A homomorphism $h: R \to S$ is given by:

$$R: V_{1} \xrightarrow{f_{a}} V_{2} \xrightarrow{f_{b}} V_{3}$$

$$\downarrow h \qquad h_{1} \downarrow \qquad h_{2} \downarrow \qquad h_{3} \downarrow$$

$$S: \qquad W_{1} \xrightarrow{g_{a}} W_{2} \xrightarrow{g_{b}} W_{3}$$

A homomorphism $h: R \to S$ is given by:

— linear maps h_i for every vertex i,

$$R: V_{1} \xrightarrow{f_{a}} V_{2} \xrightarrow{f_{b}} V_{3}$$

$$\downarrow h \qquad h_{1} \downarrow \qquad \circ \quad h_{2} \downarrow \qquad \circ \quad h_{3} \downarrow$$

$$S: W_{1} \xrightarrow{g_{a}} W_{2} \xrightarrow{g_{b}} W_{3}$$

A homomorphism $h: R \to S$ is given by:

- linear maps h_i for every vertex i,
- commuting with the linear maps for the arrows.

Representations and modules

$$\operatorname{\mathsf{mod}} kQ \simeq \operatorname{\mathsf{Rep}}_k Q$$

Representations and modules

$$\operatorname{\mathsf{mod}} kQ \simeq \operatorname{\mathsf{Rep}}_k Q$$

finitely generated kQ-modules

Representations and modules

 $\operatorname{\mathsf{mod}} kQ \simeq \operatorname{\mathsf{Rep}}_k Q$ finitely generated kQ-modules representations of Q over k

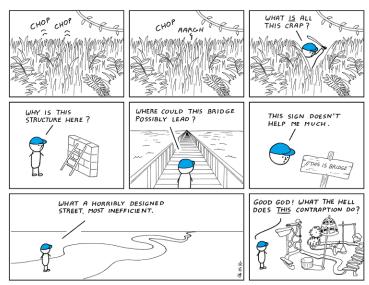
Part 2

A brief history of QPA

A brief history of QPA

- Started by Ed Green at Virginia Tech ca 1998(?)
- Originally called HOPF
- Changed and extended by many people over the years
- Name changed to QPA at some point
- Adopted by Øyvind Solberg (NTNU, Trondheim) in 2010

QPA, ca. 2014



http://www.abstrusegoose.com/432 (CC BY-NC 3.0 US)

\$

```
$ mkdir ~/src/qpa2
$
```

```
$ mkdir ~/src/qpa2
$ cd ~/src/qpa2
$
```

```
$ mkdir ~/src/qpa2
$ cd ~/src/qpa2
$ git init
```



```
$ mkdir ~/src/qpa2
$ cd ~/src/qpa2
$ git init
Initialized empty Git repository in
/home/oysteini/src/qpa2
$
```

```
$ mkdir ~/src/qpa2
$ cd ~/src/qpa2
$ git init
Initialized empty Git repository in
/home/oysteini/src/qpa2
$ mkdir lib
$
```

What do we do?

```
$ mkdir ~/src/qpa2
$ cd ~/src/qpa2
$ git init
Initialized empty Git repository in
/home/oysteini/src/qpa2
$ mkdir lib
$ emacs lib/quiver.gd
```

What do we do?

```
$ mkdir ~/src/qpa2
$ cd ~/src/qpa2
$ git init
Initialized empty Git repository in
/home/oysteini/src/qpa2
$ mkdir lib
$ emacs lib/quiver.gd
```

... and so on

QPA version 2

- Complete rewrite of QPA
- Aim: Cleaner and more consistent code
- Started in 2015, still not ready to replace QPA1

Part 3

CAP and us

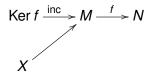
Some of the problems in QPA1

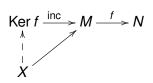
- Much of QPA is really about certain abelian categories and functors
- But not explicitly: Nothing in GAP lets us say "this is a category" or "this is a functor"
- Have many functions that deal with categorical and functorial aspects, but not in a consistent or complete manner
- Have arbitrarily added (and named) functions that are "too general" – they are applicable in any (abelian) category

$$M \xrightarrow{f} N$$

$$\operatorname{Ker} f \qquad M \xrightarrow{f} N$$

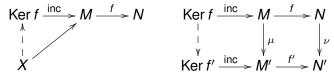
$$\operatorname{Ker} f \xrightarrow{\operatorname{inc}} M \xrightarrow{f} N$$





$$\operatorname{Ker} f \xrightarrow{\operatorname{inc}} M \xrightarrow{f} N$$

$$\operatorname{Ker} f \xrightarrow{\operatorname{inc}} M \xrightarrow{f} N$$



$$\operatorname{Ker} f \xrightarrow{\operatorname{inc}} M \xrightarrow{f} N$$

$$\downarrow \mu \qquad \qquad \downarrow \mu$$

$$\operatorname{Ker} f' \xrightarrow{\operatorname{inc}} M' \xrightarrow{f'} N'$$

$$C: \cdots \to C_2 \xrightarrow{d_2} C_1 \xrightarrow{d_1} C_0 \xrightarrow{d_0} C_{-1} \xrightarrow{d_{-1}} C_{-2} \to \cdots$$

$$C: \cdots \to C_2 \xrightarrow{d_2} C_1 \xrightarrow{d_1} C_0 \xrightarrow{d_0} C_{-1} \xrightarrow{d_{-1}} C_{-2} \to \cdots$$

$$C: \cdots \to C_2 \xrightarrow{d_2} C_1 \xrightarrow{d_1} C_0 \xrightarrow{d_0} C_{-1} \xrightarrow{d_{-1}} C_{-2} \to \cdots$$

$$\cdots \xrightarrow{d_9} \xrightarrow{d_8} \xrightarrow{d_7} \xrightarrow{d_6} \xrightarrow{d_5} \xrightarrow{d_4} \xrightarrow{d_3} \xrightarrow{d_2} \xrightarrow{r_2} \xrightarrow{r_1}$$

$$C: \cdots \to C_2 \xrightarrow{d_2} C_1 \xrightarrow{d_1} C_0 \xrightarrow{d_0} C_{-1} \xrightarrow{d_{-1}} C_{-2} \to \cdots$$

$$\cdots \xrightarrow{d_9} \xrightarrow{d_8} \xrightarrow{d_7} \xrightarrow{d_6} \xrightarrow{r_3} \xrightarrow{r_2} \xrightarrow{r_1} \xrightarrow{r_3} \xrightarrow{r_2} \xrightarrow{r_2} \xrightarrow{r_1}$$

$$C: \cdots \to C_2 \xrightarrow{d_2} C_1 \xrightarrow{d_1} C_0 \xrightarrow{d_0} C_{-1} \xrightarrow{d_{-1}} C_{-2} \to \cdots$$

$$\cdots \xrightarrow{d_9} \xrightarrow{d_8} \xrightarrow{r_2} \xrightarrow{r_1} \xrightarrow{r_3} \xrightarrow{r_3} \xrightarrow{d_5} \xrightarrow{d_4} \xrightarrow{d_3} \xrightarrow{d_2} \xrightarrow{r_1} \xrightarrow{r_1}$$

$$C: \cdots \to C_2 \xrightarrow{d_2} C_1 \xrightarrow{d_1} C_0 \xrightarrow{d_0} C_{-1} \xrightarrow{d_{-1}} C_{-2} \to \cdots$$

Represented by repeating list (r_1, r_2, r_3) of differentials:

$$\cdots \xrightarrow{d_9} \xrightarrow{d_8} \xrightarrow{r_2} \xrightarrow{r_1} \xrightarrow{r_1} \xrightarrow{r_3} \xrightarrow{r_3} \xrightarrow{d_5} \xrightarrow{d_5} \xrightarrow{d_4} \xrightarrow{d_3} \xrightarrow{r_3} \xrightarrow{r_2} \xrightarrow{r_1} \xrightarrow{r_1}$$

$$C: \cdots \to C_2 \xrightarrow{d_2} C_1 \xrightarrow{d_1} C_0 \xrightarrow{d_0} C_{-1} \xrightarrow{d_{-1}} C_{-2} \to \cdots$$

Represented by repeating list (r_1, r_2, r_3) of differentials:

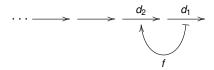
$$\cdots \xrightarrow{d_9} \xrightarrow{d_8} \xrightarrow{r_2} \xrightarrow{r_1} \xrightarrow{r_1} \xrightarrow{r_3} \xrightarrow{r_3} \xrightarrow{d_5} \xrightarrow{d_4} \xrightarrow{d_3} \xrightarrow{r_3} \xrightarrow{r_2} \xrightarrow{r_1} \xrightarrow{r_1}$$

$$\cdots \longrightarrow \longrightarrow \longrightarrow \xrightarrow{d_1}$$

$$C: \cdots \to C_2 \xrightarrow{d_2} C_1 \xrightarrow{d_1} C_0 \xrightarrow{d_0} C_{-1} \xrightarrow{d_{-1}} C_{-2} \to \cdots$$

Represented by repeating list (r_1, r_2, r_3) of differentials:

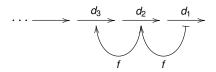
$$\cdots \xrightarrow{d_9} \xrightarrow{d_8} \xrightarrow{d_7} \xrightarrow{r_1} \xrightarrow{r_2} \xrightarrow{r_3} \xrightarrow{r_2} \xrightarrow{d_4} \xrightarrow{d_3} \xrightarrow{d_2} \xrightarrow{r_1} \xrightarrow{r_1}$$



$$C: \cdots \to C_2 \xrightarrow{d_2} C_1 \xrightarrow{d_1} C_0 \xrightarrow{d_0} C_{-1} \xrightarrow{d_{-1}} C_{-2} \to \cdots$$

Represented by repeating list (r_1, r_2, r_3) of differentials:

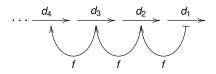
$$\cdots \xrightarrow{d_9} \xrightarrow{d_8} \xrightarrow{d_7} \xrightarrow{r_1} \xrightarrow{r_2} \xrightarrow{r_3} \xrightarrow{r_2} \xrightarrow{d_4} \xrightarrow{d_3} \xrightarrow{d_2} \xrightarrow{r_1} \xrightarrow{r_1}$$



$$C: \cdots \to C_2 \xrightarrow{d_2} C_1 \xrightarrow{d_1} C_0 \xrightarrow{d_0} C_{-1} \xrightarrow{d_{-1}} C_{-2} \to \cdots$$

Represented by repeating list (r_1, r_2, r_3) of differentials:

$$\cdots \xrightarrow{d_9} \xrightarrow{d_8} \xrightarrow{d_7} \xrightarrow{r_1} \xrightarrow{r_2} \xrightarrow{r_3} \xrightarrow{r_2} \xrightarrow{d_4} \xrightarrow{d_3} \xrightarrow{d_2} \xrightarrow{r_1} \xrightarrow{r_1}$$



Status QPA project early 2015

Wanted to:

- Rewrite QPA in a cleaner and nicer way
- Move functionality for chain complexes into a separate package

Status QPA project early 2015

Wanted to:

- Rewrite QPA in a cleaner and nicer way
- Move functionality for chain complexes into a separate package

One big missing piece:

General structures for categories and functors

Status QPA project early 2015

Wanted to:

- Rewrite QPA in a cleaner and nicer way
- Move functionality for chain complexes into a separate package

One big missing piece:

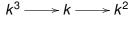
General structures for categories and functors

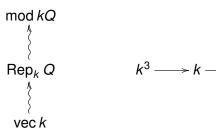
... and then we learned about CAP.

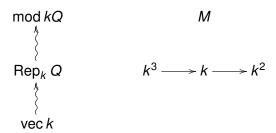
Result

— QPA2 is written with CAP in mind (almost) from the beginning

vec k







Functors in QPA2: Hom and tensor (work in progress)

 $\mathsf{Hom}_{A}({}_{A}M,-)$: $A\operatorname{\mathsf{-mod}} \to \mathsf{vec}\,k$

Functors in QPA2: Hom and tensor (work in progress)

 $\operatorname{\mathsf{Hom}}_{A}({}_{A}M,-)\colon A\operatorname{\mathsf{-mod}}\to\operatorname{\mathsf{vec}} k$ $\operatorname{\mathsf{Hom}}_{A}({}_{A}M_{B},-)\colon A\operatorname{\mathsf{-mod}}\to B\operatorname{\mathsf{-mod}}$

Functors in QPA2: Hom and tensor (work in progress)

 $\operatorname{\mathsf{Hom}}_{A}({}_{A}M,-)\colon A\operatorname{\mathsf{-mod}}\to\operatorname{\mathsf{vec}} k$

 $\mathsf{Hom}_{A}({}_{A}M_{B},-)\colon A\text{-mod}\to B\text{-mod}$

 $\mathsf{Hom}_A({}_AM_B,-)$: $A\text{-mod-}C \to B\text{-mod-}C$

Functors in QPA2: Hom and tensor (work in progress)

 $\mathsf{Hom}_{A}({}_{A}M,-)\colon A\text{-mod}\to \mathsf{vec}\, k$

 $\mathsf{Hom}_{A}({}_{A}M_{B},-)\colon A\text{-mod}\to B\text{-mod}$

23

 $\mathsf{Hom}_A({}_AM_B,-)$: $A\text{-mod-}C \to B\text{-mod-}C$

 $M_A \otimes_A -: A\operatorname{-mod} \to \operatorname{vec} k$

Functors in QPA2: Hom and tensor (work in progress)

```
\operatorname{\mathsf{Hom}}_A({}_AM,-)\colon A\operatorname{\mathsf{-mod}}\to\operatorname{\mathsf{vec}} k
\operatorname{\mathsf{Hom}}_A({}_AM_B,-)\colon A\operatorname{\mathsf{-mod}}\to B\operatorname{\mathsf{-mod}}
```

 $\mathsf{Hom}_{A}({}_{A}M_{B},-)\colon A\text{-mod-}C o B\text{-mod-}C$

 $M_A \otimes_A -: A\operatorname{-mod} \to \operatorname{vec} k$

 ${}_{B}M_{A}\otimes_{A}-: A\operatorname{\mathsf{-mod}} o B\operatorname{\mathsf{-mod}}$

Functors in QPA2: Hom and tensor (work in progress)

```
\operatorname{\mathsf{Hom}}_A({}_AM,-)\colon A\operatorname{\mathsf{-mod}} 	o \operatorname{\mathsf{vec}} k \operatorname{\mathsf{Hom}}_A({}_AM_B,-)\colon A\operatorname{\mathsf{-mod}} 	o B\operatorname{\mathsf{-mod}} \operatorname{\mathsf{Hom}}_A({}_AM_B,-)\colon A\operatorname{\mathsf{-mod}} C 	o B\operatorname{\mathsf{-mod}} C
```

 $M_A \otimes_A - : A\operatorname{\mathsf{-mod}} o \operatorname{\mathsf{vec}} k$ ${}_B M_A \otimes_A - : A\operatorname{\mathsf{-mod}} o B\operatorname{\mathsf{-mod}}$ ${}_B M_A \otimes_A - : A\operatorname{\mathsf{-mod}} o C o B\operatorname{\mathsf{-mod}} o C$

 CAP gives us a consistent and complete interface for (abelian) categories.

- CAP gives us a consistent and complete interface for (abelian) categories.
- Clear separation between general things that can be done in any abelian category and the things that are specific to our categories

- CAP gives us a consistent and complete interface for (abelian) categories.
- Clear separation between general things that can be done in any abelian category and the things that are specific to our categories
- Categories and functors are objects

- CAP gives us a consistent and complete interface for (abelian) categories.
- Clear separation between general things that can be done in any abelian category and the things that are specific to our categories
- Categories and functors are objects
- CAP makes our code better structured

— CAP is big and complex

- CAP is big and complex
- Deeply nested function calls complicate debugging

- CAP is big and complex
- Deeply nested function calls complicate debugging
- Heavy use of CAP could slow down the code

- CAP is big and complex
- Deeply nested function calls complicate debugging
- Heavy use of CAP could slow down the code
- Confusing terminology: "GAP categories" and "CAP categories"

- CAP is big and complex
- Deeply nested function calls complicate debugging
- Heavy use of CAP could slow down the code
- Confusing terminology: "GAP categories" and "CAP categories"

- CAP is big and complex
 - ... but still reasonably easy to use in simple ways
- Deeply nested function calls complicate debugging
- Heavy use of CAP could slow down the code
- Confusing terminology: "GAP categories" and "CAP categories"

- CAP is big and complex
 - ... but still reasonably easy to use in simple ways
- Deeply nested function calls complicate debugging
 - ... but that is probably necessary
- Heavy use of CAP could slow down the code
- Confusing terminology: "GAP categories" and "CAP categories"

- CAP is big and complex
 - ... but still reasonably easy to use in simple ways
- Deeply nested function calls complicate debugging
 - ... but that is probably necessary
- Heavy use of CAP could slow down the code
 - ... but there might be workarounds, such as turning off caching
- Confusing terminology: "GAP categories" and "CAP categories"

- CAP is big and complex
 - ... but still reasonably easy to use in simple ways
- Deeply nested function calls complicate debugging
 - ... but that is probably necessary
- Heavy use of CAP could slow down the code
 - ... but there might be workarounds, such as turning off caching
- Confusing terminology: "GAP categories" and "CAP categories"
 - ... but that is GAP's fault, not CAP's

Parametrized categories

— Parametrized categories: mod *

— Parametrized categories: mod ∗ → mod A

- Parametrized categories: mod * → mod A
- Parametrized functors

- Parametrized categories: mod * → mod A
- Parametrized functors: $Hom_*(*, -)$

- Parametrized categories: mod * → mod A
- Parametrized functors: $\operatorname{Hom}_*(*,-) \rightsquigarrow \operatorname{Hom}_A(M,-)$

- Parametrized categories: mod * → mod A
- Parametrized functors: $\operatorname{Hom}_*(*,-) \rightsquigarrow \operatorname{Hom}_A(M,-)$
- Contravariant functors

- Parametrized categories: mod * → mod A
- Parametrized functors: $\operatorname{Hom}_*(*,-) \rightsquigarrow \operatorname{Hom}_A(M,-)$
- Contravariant functors
- Functors with two arguments: Hom(-, -)

- Parametrized categories: mod * → mod A
- Parametrized functors: $\operatorname{Hom}_*(*,-) \rightsquigarrow \operatorname{Hom}_A(M,-)$
- Contravariant functors
- Functors with two arguments: Hom(-, -)
- CAP should,

- Parametrized categories: mod * → mod A
- Parametrized functors: $\operatorname{Hom}_*(*,-) \rightsquigarrow \operatorname{Hom}_A(M,-)$
- Contravariant functors
- Functors with two arguments: Hom(-, -)
- CAP should, like all the best free software projects,

- Parametrized categories: mod * → mod A
- Parametrized functors: $\operatorname{Hom}_*(*,-) \rightsquigarrow \operatorname{Hom}_A(M,-)$
- Contravariant functors
- Functors with two arguments: Hom(-, -)
- CAP should, like all the best free software projects, have a cute animal as mascot.

- Parametrized categories: mod * → mod A
- Parametrized functors: $\operatorname{Hom}_*(*,-) \rightsquigarrow \operatorname{Hom}_A(M,-)$
- Contravariant functors
- Functors with two arguments: Hom(-, -)
- CAP should, like all the best free software projects, have a cute animal as mascot.
 Suggestion:

- Parametrized categories: mod * → mod A
- Parametrized functors: $\operatorname{Hom}_*(*,-) \rightsquigarrow \operatorname{Hom}_A(M,-)$
- Contravariant functors
- Functors with two arguments: Hom(-, -)
- CAP should, like all the best free software projects, have a cute animal as mascot.
 - Suggestion: A cat

- Parametrized categories: mod * → mod A
- Parametrized functors: $\operatorname{Hom}_*(*,-) \rightsquigarrow \operatorname{Hom}_A(M,-)$
- Contravariant functors
- Functors with two arguments: Hom(-, -)
- CAP should, like all the best free software projects, have a cute animal as mascot.
 - Suggestion: A cat wearing a cap

- Parametrized categories: mod * → mod A
- Parametrized functors: $\operatorname{Hom}_*(*,-) \rightsquigarrow \operatorname{Hom}_A(M,-)$
- Contravariant functors
- Functors with two arguments: Hom(-, -)
- CAP should, like all the best free software projects, have a cute animal as mascot.
 - Suggestion: A cat wearing a cap with the text "CAP"