Implementation of Quillen model categories

Kamal Saleh

CAP days, University of Siegen

August 28, 2018

・ロト ・回ト ・ヨト ・ヨト

臣

Overview

1 Preliminaries

- Model categories
- Homotopy categories of Model Categories

・ロト ・回ト ・ヨト ・ヨト

臣

Overview

1 Preliminaries

- Model categories
- Homotopy categories of Model Categories

2 Complex categories

- Definitions and constructions
- Bounded derived category of finitely presented modules
- Bounded derived category of acyclic quiver representations

Overview

Preliminaries

- Model categories
- Homotopy categories of Model Categories

2 Complex categories

- Definitions and constructions
- Bounded derived category of finitely presented modules
- Bounded derived category of acyclic quiver representations

Demos

Preliminaries ●0000000000	Complex categories	Demo 0000
Retracts		

Definition

Let C be a category and X, Y objects in C. We say X is retract of Y if there exist morphisms $i: X \to Y$ and $r: Y \to X$ such that $ir = id_X$.

イロト イヨト イヨト イヨト

Retracts

Definition

Let C be a category and X, Y objects in C. We say X is retract of Y if there exist morphisms $i: X \to Y$ and $r: Y \to X$ such that $ir = id_X$.

Definition

Let $f: X \to Y, g: X' \to Y'$ be morphisms in category C. We say f is retract of g if they are so as objects in Mor(C).

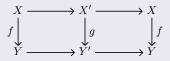
Retracts

Definition

Let C be a category and X, Y objects in C. We say X is retract of Y if there exist morphisms $i: X \to Y$ and $r: Y \to X$ such that $ir = id_X$.

Definition

Let $f: X \to Y, g: X' \to Y'$ be morphisms in category C. We say f is retract of g if they are so as objects in Mor(C). I.e., there exists a commutative diagram in C



in which the rows compose to the identity morphisms id_X and id_Y .

Definition

A Model category is a category ${\bf C}$ with three distinguished classes of morphisms

- **1** weak equivalences WE (denoted by $\xrightarrow{\sim}$),
- 2 fibrations Fib (denoted by \twoheadrightarrow) and
- **(**) cofibrations Cof (denoted by \hookrightarrow).

which are closed under composition, contain all the isomorphisms, and satisfy the following axioms:

Definition

A Model category is a category ${\bf C}$ with three distinguished classes of morphisms

- **1** weak equivalences WE (denoted by $\xrightarrow{\sim}$),
- 2 fibrations Fib (denoted by \twoheadrightarrow) and
- **③** cofibrations Cof (denoted by \hookrightarrow).

which are closed under composition, contain all the isomorphisms, and satisfy the following axioms:

• (*Limit axiom*) The category C has all finite limits and colimits. In particular, C has both initial and terminal objects, denoted by *e* and * respectively.

Definition (continued)

 (2-out-of-3 axiom) If f : X → Y and g : Y → Z are two morphisms in C, then if two out of the three morphisms f,g,fg are in WE then so is the third.

Definition (continued)

- (2-out-of-3 axiom) If f : X → Y and g : Y → Z are two morphisms in C, then if two out of the three morphisms f,g,fg are in WE then so is the third.
- (*Retract axiom*) The classes WE, Fib and Cof are closed under taking retracts.

Definition (continued)

- (2-out-of-3 axiom) If f : X → Y and g : Y → Z are two morphisms in C, then if two out of the three morphisms f,g,fg are in WE then so is the third.
- (*Retract axiom*) The classes WE, Fib and Cof are closed under taking retracts.
- (Lifting axiom) Given a commutative square diagram

with $f \in \text{Cof}$ and $g \in \text{Fib.}$ If one of the morphisms f or g is in addition a weak equivalence, then there exists a morphism $h: B \to X$ making the resulting diagram commutative. h is called a lifting of the diagram.

Definition

 (*Factorization axiom*) Every morphism f : A → X in C can be decomposed in two ways:

$$A \xrightarrow{\sim} B \longrightarrow X$$

$$A \xrightarrow{\sim} Y \xrightarrow{\sim} X$$

イロト イヨト イヨト イヨト

臣

Preliminaries ○○○●●●●●●●●	Complex categories	Demo 0000
Notations		

• An object A of C is called cofibrant if $e \to A$ is cofibration.

2

Preliminaries ○○○○●○○○○○	Complex categories	Demo 0000
Notations		

- An object A of ${\bf C}$ is called cofibrant if $e \to A$ is cofibration.
- An object A od \mathbf{C} is called fibrant if $A \rightarrow *$ is fibration.

・ 同 ト ・ ヨ ト ・ ヨ ト

臣

Preliminaries	Complex categories	Demo 0000
Notations		

- An object A of C is called cofibrant if $e \to A$ is cofibration.
- An object A od \mathbf{C} is called fibrant if $A \rightarrow *$ is fibration.
- For any object X in ${\bf C}$ we can apply the Factorization-axiom on $e\to X$ and $X\to *$ to get

$$e \longleftrightarrow QX \xrightarrow{\sim} p_X \gg X$$

$$X \xrightarrow{\sim} RX \longrightarrow *$$

QX is called cofibrant replacement of X and RX is fibrant replacement of X.

Preliminaries ○○○○●○○○○○	Complex categories	Demo 0000
Notations		

- An object A of C is called cofibrant if $e \to A$ is cofibration.
- An object A od \mathbf{C} is called fibrant if $A \rightarrow *$ is fibration.
- For any object X in ${\bf C}$ we can apply the Factorization-axiom on $e\to X$ and $X\to *$ to get

$$e \longleftrightarrow QX \xrightarrow{\sim} p_X \gg X$$

$$X \xrightarrow{\sim} RX \longrightarrow *.$$

QX is called cofibrant replacement of X and RX is fibrant replacement of X.

• If X is cofibrant we require QX = X.

Preliminaries ○○○○●○○○○○	Complex categories	Demo 0000
Notations		

- An object A of C is called cofibrant if $e \to A$ is cofibration.
- An object A od \mathbf{C} is called fibrant if $A \rightarrow *$ is fibration.
- For any object X in ${\bf C}$ we can apply the Factorization-axiom on $e\to X$ and $X\to *$ to get

$$e \longleftrightarrow QX \xrightarrow{\sim} p_X \gg X$$

$$X \xrightarrow{\sim} RX \longrightarrow *.$$

QX is called cofibrant replacement of X and RX is fibrant replacement of X.

- If X is cofibrant we require QX = X.
- If X is fibrant we require RX = X.

Replacements of a morphism

Lemma

For any morphism $f: X \to Y$ in \mathbb{C} , we have two morphisms $Qf: QX \to QY$ and $Rf: RX \to RY$ such that the following diagram is commutative

$$\begin{array}{cccc} QX & \stackrel{\sim}{\longrightarrow} X & \stackrel{\sim}{\longrightarrow} RX \\ Qf & f & f & Rf \\ QY & \stackrel{\sim}{\longrightarrow} Y & \stackrel{\sim}{\longrightarrow} X \\ \stackrel{\sim}{\longrightarrow} Y & \stackrel{\sim}{\longrightarrow} X \end{array}$$

イロト イヨト イヨト イヨト

æ

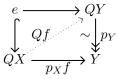
Replacements of a morphism

Lemma

For any morphism $f: X \to Y$ in \mathbb{C} , we have two morphisms $Qf: QX \to QY$ and $Rf: RX \to RY$ such that the following diagram is commutative

$$\begin{array}{c} QX \xrightarrow{\sim} & X \xrightarrow{\sim} & RX \\ Qf & & f \\ QY \xrightarrow{\sim} & Y \xrightarrow{\sim} & Y \xrightarrow{\sim} & KY \end{array}$$

Proof. The existence follows from Lifting axiom. For Qf we use the following input



Definition

Let A be an object of C. Let $(A \amalg A, j_1, j_2 : A \to A \amalg A)$ denote the pushout of $(e \to A, e \to A)$. The folding morphism of A is the universal morphism from pushout $\nabla : A \amalg A \to A$ dertermined by (id_A, id_A) . A cylinder object for A is an object $\mathbf{Cyl}(A)$ of C together with a factorization

$$A\amalg A \xrightarrow{}{} \mathbf{i} \mathbf{Cyl}(A) \xrightarrow{\sim}{p} A$$

of the folding morphism.

Definition

Let A be an object of C. Let $(A \amalg A, j_1, j_2 : A \to A \amalg A)$ denote the pushout of $(e \to A, e \to A)$. The folding morphism of A is the universal morphism from pushout $\nabla : A \amalg A \to A$ dertermined by (id_A, id_A) . A cylinder object for A is an object $\mathbf{Cyl}(A)$ of C together with a factorization

$$A \amalg A \longrightarrow \mathbf{Cyl}(A) \xrightarrow{\sim} p A$$

of the folding morphism.

We set $i_1 := j_1 i$ and $i_2 := j_2 i$.

Definition

If $f, g \in \operatorname{Hom}_{\mathbf{C}}(A, X)$, a left homotopy from f to g (written $f \stackrel{l}{\sim} g$) is defined to be a morphism $H : \mathbf{Cyl}(A) \to X$ such that the following diagram commutes.

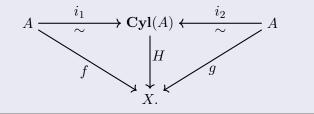
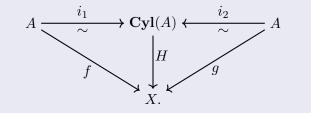


Image: A match the second s

Definition

If $f, g \in \operatorname{Hom}_{\mathbf{C}}(A, X)$, a left homotopy from f to g (written $f \stackrel{l}{\sim} g$) is defined to be a morphism $H : \mathbf{Cyl}(A) \to X$ such that the following diagram commutes.



A direct consequence is

$$f \in WE \iff H \in WE \iff g \in WE$$
.

Definition

- We write π^l(A, X) for the set of equivalence classes of Hom_C(A, X) under the equivalence relation generated by ^l~.
 Let A be a cofibrant object of C. Then
 - 1. $\stackrel{l}{\sim}$ is an equivalence relation on $\operatorname{Hom}_{\mathbf{C}}(A, X)$ for any X in C. In particular

$$\operatorname{Hom}_{\mathbf{C}}(A,X)/ \stackrel{l}{\sim} = \pi^{l}(A,X).$$

2. For any $p:Y \overset{\sim}{\longrightarrow} X$ the composition with p induces a bijection

$$p_*: \pi^l(A, Y) \to \pi^l(A, X), [f] \mapsto [pf].$$

Homotopy category of a model category

Definition

The homotopy category ${\bf Ho}({\bf C})$ of a model category ${\bf C}$ is the category with same objects as ${\bf C}$ and with

 $\operatorname{Hom}_{\operatorname{\mathbf{Ho}}(C)}(X,Y) := \operatorname{Hom}_{\operatorname{\mathbf{C}}}(RQX, RQY) / \stackrel{l}{\sim} = \pi^{l}(RQX, RQY).$

イロン 不同 とうほう 不同 とう

Homotopy category of a model category

Definition

The homotopy category ${\bf Ho}({\bf C})$ of a model category ${\bf C}$ is the category with same objects as ${\bf C}$ and with

 $\operatorname{Hom}_{\operatorname{\mathbf{Ho}}(C)}(X,Y) := \operatorname{Hom}_{\operatorname{\mathbf{C}}}(RQX, RQY) / \stackrel{l}{\sim} = \pi^{l}(RQX, RQY).$

Remark

There is a functor

$$\gamma: \mathbf{C} \to \mathbf{Ho}(\mathbf{C}) : \begin{cases} X \mapsto X \\ f: X \to Y \mapsto [RQf: RQX \to RQY]. \end{cases}$$

イロン 不同 とくほど 不良 とう

Theorem

The functor $\gamma : \mathbf{C} \to \mathbf{Ho}(\mathbf{C})$ is a localization of C with respect to the class of weak equivalences WE.

イロン 不同 とくほど 不良 とう

Theorem

The functor $\gamma : \mathbf{C} \to \mathbf{Ho}(\mathbf{C})$ is a localization of C with respect to the class of weak equivalences WE.

Let $f: X \xrightarrow{\sim} Y$ in C. Then $\gamma f = [RQX \xrightarrow{RQf} RQY] \in \operatorname{Hom}_{\mathbf{Ho}}(X, Y)$. By applying the Factorization axiom on γf we get

イロト イヨト イヨト イヨト

Theorem

The functor $\gamma : \mathbf{C} \to \mathbf{Ho}(\mathbf{C})$ is a localization of C with respect to the class of weak equivalences WE.

Let $f: X \xrightarrow{\sim} Y$ in C. Then $\gamma f = [RQX \xrightarrow{RQf} RQY] \in \operatorname{Hom}_{\mathbf{Ho}}(X, Y)$. By applying the Factorization axiom on γf we get

$$RQX \xrightarrow{\sim} i C \xrightarrow{\sim} p RQY$$

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト 二日

Theorem

The functor $\gamma : \mathbf{C} \to \mathbf{Ho}(\mathbf{C})$ is a localization of C with respect to the class of weak equivalences WE.

Let $f: X \xrightarrow{\sim} Y$ in C. Then $\gamma f = [RQX \xrightarrow{RQf} RQY] \in \operatorname{Hom}_{\mathbf{Ho}}(X, Y)$. By applying the Factorization axiom on γf we get

$$RQX \xrightarrow{\sim} C \xrightarrow{\sim} p RQY$$

$$e \xrightarrow{s_1, \cdots, r} p \qquad i \downarrow \sim RQX \xrightarrow{id} RQX$$

$$i \downarrow \sim s_2, \cdots, r \downarrow p \qquad i \downarrow \sim s_2, \cdots, r \downarrow \downarrow$$

$$RQY \xrightarrow{id} RQY \qquad C \xrightarrow{s_2, \cdots, r} \downarrow \qquad *$$

We have $(\gamma f)^{-1} = [s_1 s_2] \in \operatorname{Hom}_{\mathbf{Ho}}(Y, X).$

Abelian categories with enough projectives

Definition

Let ${\bf C}$ be a computable abelian category. ${\bf C}$ is said to have enough projectives if we can

- decide whether a given object in the category is projective or not.
- compute the (universal) projective lift.
- compute for any object X in C an epimorphism P → X from some projective object P in C.

Abelian categories with enough projectives

Definition

Let ${\bf C}$ be a computable abelian category. ${\bf C}$ is said to have enough projectives if we can

- decide whether a given object in the category is projective or not.
- compute the (universal) projective lift.
- compute for any object X in C an epimorphism P → X from some projective object P in C.
- Let R is a computable ring, then the category R-fpres of (finite) left presentations over R is computable abelian category. If we can compute lifts in R-fpres, then it is abelian with enough projectives.

Abelian categories with enough projectives

Definition

Let ${\bf C}$ be a computable abelian category. ${\bf C}$ is said to have enough projectives if we can

- decide whether a given object in the category is projective or not.
- compute the (universal) projective lift.
- compute for any object X in C an epimorphism P → X from some projective object P in C.
- Let Q is an acyclic quiver with relations given by ideal I. Then the category $\operatorname{fRep}(Q, I)$ of finite representations of Q is computable abelian category with enough projectives. Its projective global dimension in this case is less than the length of a maximal path in Q.

Chain complex category

Definition

Let C be an abelian category. The category of chain complexes ${\bf Ch}_{\bullet}(C)$ of C is the category with objects

$$A_{\bullet}: \qquad \cdots \longleftarrow A_{i-1} \xleftarrow{d_i^A} A_i \xleftarrow{d_{i+1}^A} A_{i+1} \longleftarrow \cdots$$

and morphisms

$$A_{\bullet}: \qquad \cdots \longleftarrow A_{i-1} \xleftarrow{d_i^A} A_i \xleftarrow{d_{i+1}^A} A_{i+1} \xleftarrow{\cdots} \cdots$$
$$\downarrow \phi_{\bullet} \qquad \phi_{i-1} \downarrow \qquad \phi_i \downarrow \qquad \phi_{i+1} \downarrow$$
$$B_{\bullet}: \qquad \cdots \longleftarrow B_{i-1} \xleftarrow{d_i^B} B_i \xleftarrow{d_{i+1}^B} B_{i+1} \xleftarrow{\cdots} \cdots$$

(日)、<回)、<三)、</p>

臣

∢ ≣ ▶

Chain complex category

Definition

Let C be an abelian category. The category of chain complexes ${\bf Ch}_{\bullet}(C)$ of C is the category with objects

$$A_{\bullet}: \qquad \cdots \longleftarrow A_{i-1} \xleftarrow{d_i^A} A_i \xleftarrow{d_{i+1}^A} A_{i+1} \xleftarrow{} \cdots$$

and morphisms

Theorem

If C is computable abelian category, then so is $Ch_{\bullet}(C)$.

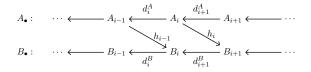
Kamal Saleh (University of Siegen) Quillen

Quillen model categories

イロト イヨト イヨト イヨト 二日

Null-homotopic chain morphisms

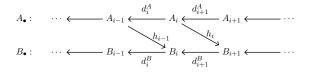
Let A_{\bullet}, B_{\bullet} be two chain complexes in $\mathbf{Ch}_{\bullet}(\mathbf{C})$ and let $(h_i : A_i \to B_{i+1})_{i \in \mathbb{Z}}$ be a family of morphisms in \mathbf{C} .



イロト イヨト イヨト イヨト 二日

Null-homotopic chain morphisms

Let A_{\bullet}, B_{\bullet} be two chain complexes in $\mathbf{Ch}_{\bullet}(\mathbf{C})$ and let $(h_i : A_i \to B_{i+1})_{i \in \mathbb{Z}}$ be a family of morphisms in \mathbf{C} .

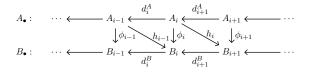


Then the morphisms $(\phi_i := h_i d_{i+1}^B + d_i^A h_{i-1} : A_i \to B_i)_{i \in \mathbb{Z}}$ define a chain morphism $\phi_{\bullet} : A_{\bullet} \to B_{\bullet}$.

イロト イヨト イヨト イヨト 二日

Null-homotopic chain morphisms

Let A_{\bullet}, B_{\bullet} be two chain complexes in $\mathbf{Ch}_{\bullet}(\mathbf{C})$ and let $(h_i : A_i \to B_{i+1})_{i \in \mathbb{Z}}$ be a family of morphisms in \mathbf{C} .

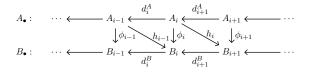


Then the morphisms $(\phi_i := h_i d_{i+1}^B + d_i^A h_{i-1} : A_i \to B_i)_{i \in \mathbb{Z}}$ define a chain morphism $\phi_{\bullet} : A_{\bullet} \to B_{\bullet}$.

イロン イボン イモン イモン 三日

Null-homotopic chain morphisms

Let A_{\bullet}, B_{\bullet} be two chain complexes in $\mathbf{Ch}_{\bullet}(\mathbf{C})$ and let $(h_i : A_i \to B_{i+1})_{i \in \mathbb{Z}}$ be a family of morphisms in \mathbf{C} .



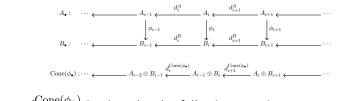
Then the morphisms $(\phi_i := h_i d_{i+1}^B + d_i^A h_{i-1} : A_i \to B_i)_{i \in \mathbb{Z}}$ define a chain morphism $\phi_{\bullet} : A_{\bullet} \to B_{\bullet}$. Such chain morphisms are said to be homotopic to zero or **Null-homotopic** and the family $(h_i)_{i \in \mathbb{Z}}$ is called **Homotopy morphisms** of ϕ_{\bullet} .

Preliminaries	Complex categories	D

emo

▲冊▶▲臣▶▲臣▶ 臣 のQ@

Let $\phi_{\bullet}: A_{\bullet} \to B_{\bullet}$ in $\mathbf{Ch}_{\bullet}(\mathbf{C})$. We have the following diagram

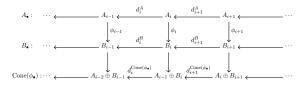


where $d_i^{\operatorname{Cone}(\phi_{\bullet})}$ is given by the following matrix

Mapping c<u>one</u>

$$\begin{bmatrix} d_{i-1}^A & -\phi_{i-1} \\ 0 & d_i^B \end{bmatrix}$$

Let $\phi_{\bullet}: A_{\bullet} \to B_{\bullet}$ in $\mathbf{Ch}_{\bullet}(\mathbf{C})$. We have the following diagram



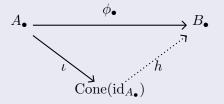
where $d_i^{\operatorname{Cone}(\phi_{\bullet})}$ is given by the following matrix

$$\begin{bmatrix} d_{i-1}^A & -\phi_{i-1} \\ 0 & d_i^B \end{bmatrix}$$

<ロ> (四) (四) (三) (三) (三)

Moreover, we have a natural injection of B_{\bullet} in $\operatorname{Cone}(\phi_{\bullet})$.

Let $\phi_{\bullet} : A_{\bullet} \to B_{\bullet}$ in $\mathbf{Ch}_{\bullet}(\mathbf{C})$. Then ϕ_{\bullet} is Null-homotopic iff there is a colift of the natural injection of A_{\bullet} in $\mathrm{Cone}(\mathrm{id}_{A_{\bullet}})$ along ϕ_{\bullet} . *l.e.*, there is a commutative diagram



Let C be an abelian category with enough projectives. Define a morphism $\phi_{\bullet}: A_{\bullet} \to B_{\bullet} \in \mathbf{Ch}^{\mathrm{b}}_{\bullet}(\mathbf{C})$ to be

- a weak equivalence if ϕ_{\bullet} is quasi-isomorphism.
- a cofibration if for each k the map $\phi_k : A_k \to B_k$ is a monomorphism with projective cokernel object.
- a fibration if for each k the map $\phi_k: A_k \to B_k$ is an epimorphism.

Then with these choices $\mathbf{Ch}^{\mathrm{b}}_{\bullet}(\mathbf{C})$ is a model category.

イロト イヨト イヨト イヨト

Let C be an abelian category with enough projectives. Define a morphism $\phi_{\bullet}: A_{\bullet} \to B_{\bullet} \in \mathbf{Ch}^{\mathrm{b}}_{\bullet}(\mathbf{C})$ to be

- a weak equivalence if ϕ_{\bullet} is quasi-isomorphism.
- a cofibration if for each k the map $\phi_k : A_k \to B_k$ is a monomorphism with projective cokernel object.
- a fibration if for each k the map $\phi_k: A_k \to B_k$ is an epimorphism.

Then with these choices $\mathbf{Ch}^{\mathrm{b}}_{\bullet}(\mathbf{C})$ is a model category.

In this setting, it can be shown that two morphisms $\phi_{\bullet}, \psi_{\bullet}$ in $\mathbf{Ch}^{\mathrm{b}}_{\bullet}(\mathbf{C})$ are left-homotopic iff $\phi_{\bullet} - \psi_{\bullet}$ is Null-homotopic.

イロト イヨト イヨト イヨト

Let C be a computable abelian category with enough projectives and finite projective global dimension. If lifts and colifts are computable in $\mathbf{Ch}^{b}(\mathbf{C})$ then $\mathbf{Ho}(\mathbf{Ch}^{b}(\mathbf{C}))$ is computable additive (triangulated) category.

イロト イヨト イヨト イヨト

臣

Let C be a computable abelian category with enough projectives and finite projective global dimension. If lifts and colifts are computable in $\mathbf{Ch}^{b}(\mathbf{C})$ then $\mathbf{Ho}(\mathbf{Ch}^{b}(\mathbf{C}))$ is computable additive (triangulated) category.

The colift operation is needed to decide whether a morphism in $\mathbf{Ch}^{b}(\mathbf{C})$ is null-homotopic or not. The lift operation is needed for the lifting-axiom.

If R is computable commutative ring with finite global projective dimension, for example \mathbb{Z} or $k[x_0, \ldots, x_n]$, then $\mathbf{Ho}(\mathbf{Ch}^b(R\text{-fpre}))$ is computable additive category.

イロト イポト イヨト イヨト

臣

If R is computable commutative ring with finite global projective dimension, for example \mathbb{Z} or $k[x_0, \ldots, x_n]$, then $\mathbf{Ho}(\mathbf{Ch}^b(R\text{-fpre}))$ is computable additive category.

Here the problem of computing lifts and colifts in $\mathbf{Ch}^{b}(R ext{-fpre})$ can be reduced to a computation of a lifts in $R ext{-fpre}$.

Let Q is an acyclic quiver with relation given by ideal I. Then $Ho(Ch^b(fRep(Q, I)))$ is computable additive category.

イロン イヨン イヨン イヨン

臣

Let Q is an acyclic quiver with relation given by ideal I. Then $Ho(Ch^b(fRep(Q, I)))$ is computable additive category.

Any bounded chain complex of quiver representations can be considered as a representation of some other bigger quiver with relations, say (Q', I'). Hence the problem of computing lifts and colifts in $\mathbf{Ch}^{b}(\operatorname{fRep}(Q, I))$ can be reduced to computation of lifts and colifts in $\operatorname{fRep}(Q', I')$.

< ロ > < 同 > < 三 > < 三 >

<回と < 目と < 目と

$\operatorname{Ho}(\operatorname{Ch}^b_{\bullet}(k[x_0,\ldots,x_n]\operatorname{-fpres}))$

The Gap/Cap demo can be found at https://github.com/kamalsaleh/ModelCategories The following packages are required

- CAP
- RingsForHomalg
- ToolsForHomalg
- ModulePresentationsForCAP
- InfiniteLists
- ComplexesForCAP
- TriangulatedCategoriesForCAP
- ModelCategories

Ho(Ch^b(fRep(Q, I))) for Q the Beilinson quiver

The Gap/Cap demo can be found at https://github.com/kamalsaleh/ModelCategories The following packages are required

- CAP
- QPA2
- InfiniteLists
- ComplexesForCAP
- TriangulatedCategoriesForCAP
- ModelCategories

イロト イヨト イヨト イヨト

- Homotopy theories and model categories, W. G. Dwyer and J. Spalinski
- 2 Model categories, *M. Hovey*
- An axiomatic setup for algorithmic homological algebra and an alternative approach to localization, *M. Barakat, M. Lange-Hegermann*
- **③** CAP, S. Gutsche, S. Posur, M. Barakat, Ø. Skartsæterhagen

イロト イポト イヨト イヨト

Thanks

◆□ > ◆□ > ◆ □ > ◆ □ > ●