Goto Chapter: Top 1 2 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

2 Examples and Tests
 2.1 Basic Commands
 2.2 Split epi summand
 2.3 Kernel
 2.4 FiberProduct

2 Examples and Tests

2.1 Basic Commands

gap> Q := HomalgFieldOfRationals();;
gap> a := VectorSpaceObject( 3, Q );
<A vector space object over Q of dimension 3>
gap> HasIsProjective( a ) and IsProjective( a );
true
gap> vec := MatrixCategory( Q );;
gap> ap := 3/vec;;
gap> IsEqualForObjects( a, ap );
true
gap> b := VectorSpaceObject( 4, Q );
<A vector space object over Q of dimension 4>
gap> homalg_matrix := HomalgMatrix( [ [ 1, 0, 0, 0 ],
>                                   [ 0, 1, 0, -1 ],
>                                   [ -1, 0, 2, 1 ] ], 3, 4, Q );
<A 3 x 4 matrix over an internal ring>
gap> alpha := VectorSpaceMorphism( a, homalg_matrix, b );
<A morphism in Category of matrices over Q>
gap> Display( alpha );
[ [   1,   0,   0,   0 ],
  [   0,   1,   0,  -1 ],
  [  -1,   0,   2,   1 ] ]

A morphism in Category of matrices over Q
gap> alphap := homalg_matrix/vec;;
gap> IsCongruentForMorphisms( alpha, alphap );
true
gap> homalg_matrix := HomalgMatrix( [ [ 1, 1, 0, 0 ],
>                                   [ 0, 1, 0, -1 ],
>                                   [ -1, 0, 2, 1 ] ], 3, 4, Q );
<A 3 x 4 matrix over an internal ring>
gap> beta := VectorSpaceMorphism( a, homalg_matrix, b );
<A morphism in Category of matrices over Q>
gap> CokernelObject( alpha );
<A vector space object over Q of dimension 1>
gap> c := CokernelProjection( alpha );;
#@if ValueOption( "no_precompiled_code" ) <> true
gap> Display( c );
[ [     0 ],
  [     1 ],
  [  -1/2 ],
  [     1 ] ]

A split epimorphism in Category of matrices over Q
#@fi
gap> gamma := UniversalMorphismIntoDirectSum( [ c, c ] );;
gap> Display( gamma );
[ [     0,     0 ],
  [     1,     1 ],
  [  -1/2,  -1/2 ],
  [     1,     1 ] ]

A morphism in Category of matrices over Q
gap> colift := CokernelColift( alpha, gamma );;
gap> IsEqualForMorphisms( PreCompose( c, colift ), gamma );
true
gap> FiberProduct( alpha, beta );
<A vector space object over Q of dimension 2>
gap> F := FiberProduct( alpha, beta );
<A vector space object over Q of dimension 2>
gap> p1 := ProjectionInFactorOfFiberProduct( [ alpha, beta ], 1 );
<A morphism in Category of matrices over Q>
gap> Display( PreCompose( p1, alpha ) );
[ [   0,   1,   0,  -1 ],
  [  -1,   0,   2,   1 ] ]

A morphism in Category of matrices over Q
gap> Pushout( alpha, beta );
<A vector space object over Q of dimension 5>
gap> i1 := InjectionOfCofactorOfPushout( [ alpha, beta ], 1 );
<A morphism in Category of matrices over Q>
gap> i2 := InjectionOfCofactorOfPushout( [ alpha, beta ], 2 );
<A morphism in Category of matrices over Q>
gap> u := UniversalMorphismFromDirectSum( [ b, b ], [ i1, i2 ] );
<A morphism in Category of matrices over Q>
gap> Display( u );
[ [     0,     1,     1,     0,     0 ],
  [     1,     0,     1,     0,    -1 ],
  [  -1/2,     0,   1/2,     1,   1/2 ],
  [     1,     0,     0,     0,     0 ],
  [     0,     1,     0,     0,     0 ],
  [     0,     0,     1,     0,     0 ],
  [     0,     0,     0,     1,     0 ],
  [     0,     0,     0,     0,     1 ] ]

A morphism in Category of matrices over Q
gap> KernelObjectFunctorial( u, IdentityMorphism( Source( u ) ), u ) = IdentityMorphism( VectorSpaceObject( 3, Q ) );
true
gap> IsZero( CokernelObjectFunctorial( u, IdentityMorphism( Range( u ) ), u ) );
true
gap> DirectProductFunctorial( [ u, u ] ) = DirectSumFunctorial( [ u, u ] );
true
gap> CoproductFunctorial( [ u, u ] ) = DirectSumFunctorial( [ u, u ] );
true
gap> IsOne( FiberProductFunctorial( [ u, u ], [ IdentityMorphism( Source( u ) ), IdentityMorphism( Source( u ) ) ], [ u, u ] ) );
true
gap> IsOne( PushoutFunctorial( [ u, u ], [ IdentityMorphism( Range( u ) ), IdentityMorphism( Range( u ) ) ], [ u, u ] ) );
true
gap> IsCongruentForMorphisms( (1/2) * alpha, alpha * (1/2) );
true
gap> Dimension( HomomorphismStructureOnObjects( a, b ) ) = Dimension( a ) * Dimension( b );
true
gap> IsCongruentForMorphisms(
>     PreCompose( [ u, DualOnMorphisms( i1 ), DualOnMorphisms( alpha ) ] ),
>     InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism( Source( u ), Source( alpha ),
>          PreCompose(
>              InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure( DualOnMorphisms( i1 ) ),
>              HomomorphismStructureOnMorphisms( u, DualOnMorphisms( alpha ) )
>          )
>     )
> );
true
gap> alpha_op := Opposite( alpha );
<A morphism in Opposite( Category of matrices over Q )>
gap> basis := BasisOfExternalHom( Source( alpha_op ), Range( alpha_op ) );;
gap> coeffs := CoefficientsOfMorphism( alpha_op );
[ 1, 0, 0, 0, 0, 1, 0, -1, -1, 0, 2, 1 ]
gap> IsEqualForMorphisms( alpha_op, coeffs * basis );
true
gap> vec := CapCategory( alpha );;
gap> t := TensorUnit( vec );;
gap> z := ZeroObject( vec );;
gap> IsCongruentForMorphisms(
>     ZeroObjectFunctorial( vec ),
>     InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism( z, z, ZeroMorphism( t, z ) )
> );
true
gap> IsCongruentForMorphisms(
>     ZeroObjectFunctorial( vec ),
>     InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism(
>         z, z,
>         InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure( ZeroObjectFunctorial( vec ) )
>     )
> );
true
gap> right_side := PreCompose( [ i1, DualOnMorphisms( u ), u ] );;
gap> x := SolveLinearSystemInAbCategory( [ [ i1 ] ], [ [ u ] ], [ right_side ] )[1];;
gap> IsCongruentForMorphisms( PreCompose( [ i1, x, u ] ), right_side );
true
gap> a_otimes_b := TensorProductOnObjects( a, b );
<A vector space object over Q of dimension 12>
gap> hom_ab := InternalHomOnObjects( a, b );
<A vector space object over Q of dimension 12>
gap> cohom_ab := InternalCoHomOnObjects( a, b );
<A vector space object over Q of dimension 12>
gap> hom_ab = cohom_ab;
true
gap> 1_ab := VectorSpaceMorphism(
>           a_otimes_b,
>           HomalgIdentityMatrix( Dimension( a_otimes_b ), Q ),
>           a_otimes_b
>           );
<A morphism in Category of matrices over Q>
gap> 1_hom_ab := VectorSpaceMorphism(
>               hom_ab,
>               HomalgIdentityMatrix( Dimension( hom_ab ), Q ),
>               hom_ab
>             );
<A morphism in Category of matrices over Q>
gap> 1_cohom_ab := VectorSpaceMorphism(
>                 cohom_ab,
>                 HomalgIdentityMatrix( Dimension( cohom_ab ), Q ),
>                 cohom_ab
>               );
<A morphism in Category of matrices over Q>
gap> ev_ab := ClosedMonoidalLeftEvaluationMorphism( a, b );
<A morphism in Category of matrices over Q>
gap> coev_ab := ClosedMonoidalLeftCoevaluationMorphism( a, b );
<A morphism in Category of matrices over Q>
gap> coev_ba := ClosedMonoidalLeftCoevaluationMorphism( b, a );
<A morphism in Category of matrices over Q>
gap> cocl_ev_ab := CoclosedMonoidalLeftEvaluationMorphism( a, b );
<A morphism in Category of matrices over Q>
gap> cocl_ev_ba := CoclosedMonoidalLeftEvaluationMorphism( b, a );
<A morphism in Category of matrices over Q>
gap> cocl_coev_ab := CoclosedMonoidalLeftCoevaluationMorphism( a, b );
<A morphism in Category of matrices over Q>
gap> cocl_coev_ba := CoclosedMonoidalLeftCoevaluationMorphism( b, a );
<A morphism in Category of matrices over Q>
gap> UnderlyingMatrix( ev_ab ) = TransposedMatrix( UnderlyingMatrix( cocl_ev_ab ) );
true
gap> UnderlyingMatrix( coev_ab ) = TransposedMatrix( UnderlyingMatrix( cocl_coev_ab ) );
true
gap> UnderlyingMatrix( coev_ba ) = TransposedMatrix( UnderlyingMatrix( cocl_coev_ba ) );
true
gap> tensor_hom_adj_1_hom_ab := InternalHomToTensorProductLeftAdjunctMorphism( a, b, 1_hom_ab );
<A morphism in Category of matrices over Q>
gap> cohom_tensor_adj_1_cohom_ab := InternalCoHomToTensorProductLeftAdjunctMorphism( a, b, 1_cohom_ab );
<A morphism in Category of matrices over Q>
gap> tensor_hom_adj_1_ab := TensorProductToInternalHomLeftAdjunctMorphism( a, b, 1_ab );
<A morphism in Category of matrices over Q>
gap> cohom_tensor_adj_1_ab := TensorProductToInternalCoHomLeftAdjunctMorphism( a, b, 1_ab );
<A morphism in Category of matrices over Q>
gap> ev_ab = tensor_hom_adj_1_hom_ab;
true
gap> cocl_ev_ba = cohom_tensor_adj_1_cohom_ab;
true
gap> coev_ba = tensor_hom_adj_1_ab;
true
gap> cocl_coev_ba = cohom_tensor_adj_1_ab;
true
gap> c := VectorSpaceObject(2,Q);
<A vector space object over Q of dimension 2>
gap> d := VectorSpaceObject(1,Q);
<A vector space object over Q of dimension 1>
gap> pre_compose := MonoidalPreComposeMorphism( a, b, c );
<A morphism in Category of matrices over Q>
gap> post_compose := MonoidalPostComposeMorphism( a, b, c );
<A morphism in Category of matrices over Q>
gap> pre_cocompose := MonoidalPreCoComposeMorphism( c, b, a );
<A morphism in Category of matrices over Q>
gap> post_cocompose := MonoidalPostCoComposeMorphism( c, b, a );
<A morphism in Category of matrices over Q>
gap> UnderlyingMatrix( pre_compose ) = TransposedMatrix( UnderlyingMatrix( pre_cocompose ) );
true
gap> UnderlyingMatrix( post_compose ) = TransposedMatrix( UnderlyingMatrix( post_cocompose ) );
true
gap> tp_hom_comp := TensorProductInternalHomCompatibilityMorphism( [ a, b, c, d ] );
<A morphism in Category of matrices over Q>
gap> cohom_tp_comp := InternalCoHomTensorProductCompatibilityMorphism( [ b, d, a, c ] );
<A morphism in Category of matrices over Q>
gap> UnderlyingMatrix( tp_hom_comp ) = TransposedMatrix( UnderlyingMatrix( cohom_tp_comp ) );
true
gap> lambda := LambdaIntroduction( alpha );
<A morphism in Category of matrices over Q>
gap> lambda_elim := LambdaElimination( a, b, lambda );
<A morphism in Category of matrices over Q>
gap> alpha = lambda_elim;
true
gap> alpha_op := VectorSpaceMorphism( b, TransposedMatrix( UnderlyingMatrix( alpha ) ), a );
<A morphism in Category of matrices over Q>
gap> colambda := CoLambdaIntroduction( alpha_op );
<A morphism in Category of matrices over Q>
gap> colambda_elim := CoLambdaElimination( b, a, colambda );
<A morphism in Category of matrices over Q>
gap> alpha_op = colambda_elim;
true
gap> UnderlyingMatrix( lambda ) = TransposedMatrix( UnderlyingMatrix( colambda ) );
true
gap> delta := PreCompose( colambda, lambda);
<A morphism in Category of matrices over Q>
gap> Display( TraceMap( delta ) );
[ [  9 ] ]

A morphism in Category of matrices over Q
gap> Display( CoTraceMap( delta ) );
[ [  9 ] ]

A morphism in Category of matrices over Q
gap> TraceMap( delta ) = CoTraceMap( delta );
true
gap> RankMorphism( a ) = CoRankMorphism( a );
true

2.2 Split epi summand

gap> Q := HomalgFieldOfRationals();;
gap> a := VectorSpaceObject( 3, Q );;
gap> b := VectorSpaceObject( 4, Q );;
gap> homalg_matrix := HomalgMatrix( [ [ 1, 0, 0, 0 ],
>                                   [ 0, 1, 0, -1 ],
>                                   [ -1, 0, 2, 1 ] ], 3, 4, Q );;
gap> alpha := VectorSpaceMorphism( a, homalg_matrix, b );;
gap> Display( SomeReductionBySplitEpiSummand( alpha ) );
(an empty 0 x 1 matrix)

A morphism in Category of matrices over Q
gap> Display( SomeReductionBySplitEpiSummand_MorphismFromInputRange( alpha ) );
[ [     0 ],
  [     1 ],
  [  -1/2 ],
  [     1 ] ]

A morphism in Category of matrices over Q
gap> Display( SomeReductionBySplitEpiSummand_MorphismToInputRange( alpha ) );
[ [  0,  1,  0,  0 ] ]

A morphism in Category of matrices over Q

2.3 Kernel

gap> Q := HomalgFieldOfRationals();
Q
gap> V := VectorSpaceObject( 2, Q );
<A vector space object over Q of dimension 2>
gap> W := VectorSpaceObject( 3, Q );
<A vector space object over Q of dimension 3>
gap> alpha := VectorSpaceMorphism( V, [ [ 1, 1, 1 ], [ -1, -1, -1 ] ], W );
<A morphism in Category of matrices over Q>
gap> k := KernelObject( alpha );
<A vector space object over Q of dimension 1>
gap> T := VectorSpaceObject( 2, Q );
<A vector space object over Q of dimension 2>
gap> tau := VectorSpaceMorphism( T, [ [ 2, 2 ], [ 2, 2 ] ], V );
<A morphism in Category of matrices over Q>
gap> k_lift := KernelLift( alpha, tau );
<A morphism in Category of matrices over Q>
gap> HasKernelEmbedding( alpha );
false
gap> KernelEmbedding( alpha );
<A split monomorphism in Category of matrices over Q>
gap> Q := HomalgFieldOfRationals();
Q
gap> V := VectorSpaceObject( 2, Q );
<A vector space object over Q of dimension 2>
gap> W := VectorSpaceObject( 3, Q );
<A vector space object over Q of dimension 3>
gap> alpha := VectorSpaceMorphism( V, [ [ 1, 1, 1 ], [ -1, -1, -1 ] ], W );
<A morphism in Category of matrices over Q>
gap> k := KernelObject( alpha );
<A vector space object over Q of dimension 1>
gap> T := VectorSpaceObject( 2, Q );
<A vector space object over Q of dimension 2>
gap> tau := VectorSpaceMorphism( T, [ [ 2, 2 ], [ 2, 2 ] ], V );
<A morphism in Category of matrices over Q>
gap> k_lift := KernelLift( alpha, tau );
<A morphism in Category of matrices over Q>
gap> HasKernelEmbedding( alpha );
false
gap> Q := HomalgFieldOfRationals();
Q
gap> V := VectorSpaceObject( 2, Q );
<A vector space object over Q of dimension 2>
gap> W := VectorSpaceObject( 3, Q );
<A vector space object over Q of dimension 3>
gap> alpha := VectorSpaceMorphism( V, [ [ 1, 1, 1 ], [ -1, -1, -1 ] ], W );
<A morphism in Category of matrices over Q>
gap> k := KernelObject( alpha );
<A vector space object over Q of dimension 1>
gap> k_emb := KernelEmbedding( alpha );
<A split monomorphism in Category of matrices over Q>
gap> IsEqualForObjects( Source( k_emb ), k );
true
gap> V := VectorSpaceObject( 2, Q );
<A vector space object over Q of dimension 2>
gap> W := VectorSpaceObject( 3, Q );
<A vector space object over Q of dimension 3>
gap> beta := VectorSpaceMorphism( V, [ [ 1, 1, 1 ], [ -1, -1, -1 ] ], W );
<A morphism in Category of matrices over Q>
gap> k_emb := KernelEmbedding( beta );
<A split monomorphism in Category of matrices over Q>
gap> IsIdenticalObj( Source( k_emb ), KernelObject( beta ) );
true

2.4 FiberProduct

gap> Q := HomalgFieldOfRationals();
Q
gap> A := VectorSpaceObject( 1, Q );
<A vector space object over Q of dimension 1>
gap> B := VectorSpaceObject( 2, Q );
<A vector space object over Q of dimension 2>
gap> C := VectorSpaceObject( 3, Q );
<A vector space object over Q of dimension 3>
gap> AtoC := VectorSpaceMorphism( A, [ [ 1, 2, 0 ] ], C );
<A morphism in Category of matrices over Q>
gap> BtoC := VectorSpaceMorphism( B, [ [ 1, 0, 0 ], [ 0, 1, 0 ] ], C );
<A morphism in Category of matrices over Q>
gap> P := FiberProduct( AtoC, BtoC );
<A vector space object over Q of dimension 1>
gap> p1 := ProjectionInFactorOfFiberProduct( [ AtoC, BtoC ], 1 );
<A morphism in Category of matrices over Q>
gap> p2 := ProjectionInFactorOfFiberProduct( [ AtoC, BtoC ], 2 );
<A morphism in Category of matrices over Q>
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 Ind

generated by GAPDoc2HTML